
Extended SNMP for Integrity Verification in Distributed
Systems

Muhammad Amjad1, Fazal Wahab2,*, Anwar Shah2, Muhammad Khalid3, and Muhammad Irfan Saeed2
1Department of computer Science, Institute of Management Sciences (IMSciences), Peshawar, Pakistan

2Department of AI and Data Science, National University of Computer and Emerging Sciences, Chiniot Campus, Pakistan
3School of Software Engineering, Dalian University of Science and Technology, China

Email: contactamjid@gmail.com (M.A.); fazalwahabstu@gmail.com (F.W.); anwar.shah@nu.edu.pk (A.S.);
m.khalid@mail.dlut.edu.cn (M.K.); iffiawan4@gmail.com (M.I.S.)

*Corresponding author
Manuscript received September 2, 2025; accepted December 5, 2025; published February 13, 2026

Abstract—As dependence on computer technology grows, the
need for improved security becomes increasingly essential. The
majority of people are connected to networks through various
means, such as mobile phones, Automated Teller Machines
(ATMs), online banking, and social media. Researchers have
proposed various strategies to protect user data, however,
security remains a primary concern as users continue to face
numerous challenges. In order to cope with these technological
challenges, Trusted Computing Group (TCG) introduced the
Trusted Platform Module (TPM), a hardware-based
cryptographic chip designed for system integrity verification.
The TPM provides hardware-based integrity verification;
however, there is no existing protocol to remotely monitor
integrity across multiple systems in a distributed network. This
study proposes an extended Simple Network Management
Protocol (SNMP) architecture that collects TPM-verified
integrity values of distributed systems and report them to the
network administrator. On the administrator side, these values
are matched against stored signatures to determine the integrity
of these systems. To validate our approach, a Nagios-based
monitoring system is used to displays the integrity status of
overall network, distinguishing between trusted and
compromised devices. Experimental results indicate that the
Extended-SNMP solution achieve low overhead, high scalability,
and reduced false positives compared to conventional
host-based integrity monitoring techniques such as Host-based
Intrusion Detection System (HIDs) or Network Intrusion
Detection Systems (NIDs). This approach enhances real-time
security visibility in distributed environments, making it a
practical alternative for large-scale network security
management.

Keywords—extended Simple Network Management Protocol
(SNMP), integrity, Trusted Computing Group (TCG), Trusted
Platform Module (TPM), Integrity Measurement Architecture
(IMA), root of trust for measurement

I. INTRODUCTION

The increasing adoption and rapid development of
technology have led to a growing complexity in modern
systems. Technology makes it easier for an inexperienced
user to access internet services and enables businesses to
offer online services such as digital payments and
e-commerce. However, this widespread reliance on
technology exposes users to numerous security risks every
day, leading to an estimated annual loss of $1 trillion due to
data breaches, ransom-ware, and financial fraud [1].
Information security experts are responsible for preventing
and minimizing these risks and providing a secure digital
environment. Server-side security is typically reinforced by
implementing various security policies such as firewalls,
IDS, anti-viruses, updates, patches, and routine network

monitoring tools [2]. The client side needs to manage these
vulnerabilities, which requires security-focused strategies.
Incorrect software settings or improper programming
practices might cause such assaults [3]. Security software,
such as antivirus programs, can be used to remove malware;
however, recent research has revealed that software alone is
not sufficient to ensure system security as it remains
susceptible to attacks [4]. Some attacks are so sophisticated
that they can compromise the BIOS or modify the Master
Boot Record (MBR), infect the operating system, and disrupt
the application behavior [5], as conventional antivirus
software cannot shield the system from attacks at the BIOS
level. Therefore, operating system security cannot be
achieved solely by software-based solutions [6, 7].

To mitigate these challenges, hardware-based techniques
are required to encipher and store sensitive data in
tamper-resistant memory with restricted access to
unauthorized users. TCG implements a hardware Root of
Trust (RoT) strategy through the Trusted Platform Module
(TPM). In 2004, TCG TPM 1.2 and later updated to TPM 2.0
[8, 9]. The TPM chip is a hardware security module that
incorporates encryption algorithms and provides
cryptographic functions. Verifies the integrity status of
running applications and stored data using Platform
Configuration Registers (PCRs) that are tamper-proof
storage locations and can be accessed only with a trusted
software stack [10]. Attestation is another key feature of
TPM that ensures the trustworthiness of a target platform by
generating hash measurement [11]. This process begins at the
hardware root of trust and extends through the boot loader,
BIOS, and Operating System kernel, enabling to detect any
modification to critical system modules. The TPM works in
conjunction with the processor (CPU) and other components
to provide secure operations, key management, and system
integrity verification.

The Simple Network Management Protocol (SNMP) is an
application layer (Layer 7) protocol designed to collect and
report network configuration and status information to
administrators. Extended SNMP enhances this functionality
by allowing customized implementation to meet specific
security and monitoring requirements. The proposed design
leverages Extended SNMP to securely transmit
TPM-generated integrity status of each client to a centralized
monitoring server for security enforcement.

This research aims to achieve the following objectives.
 Extend SNMP to securely collect and report the integrity

status of connected node with minimum overhead and

Journal of Advances in Computer Networks, Vol. 14, No. 1, 2026

1doi: 10.18178/jacn.2026.14.1.298

mailto:fazalwahabstu@gmail.com
mailto:anwar.shah@nu.edu.pk

maximum scalability.
 Develop a network-wide monitoring interface to enable

real-time assessment of network integrity.
The paper is divided into multiple sections. Section II

provides background information and a review of related
literature, while Section III details the proposed solution,
while Section IV describes its implementation and presents
the experimental results. Finally, Section V concludes the
paper by summarizing key findings and outlining potential
directions for future research.

II. BACKGROUND
This section presents the foundation concepts relevant to

this study, including Simple Network Management Protocol
(SNMP), trusted computing, the Trusted Computing Group
(TCG), Trusted Platform Module (TPM), Integrity
Measurement Architecture (IMA), and distributed systems.
Additionally, it provides a comparative analysis of proposed
architecture with existing approaches in the literature.

A. Simple Network Management Protocol (SNMP)
The Simple Network Management Protocol (SNMP) is a

widely used standard protocol designed to monitor and
manage network-based devices. It collects network status
information, which is reported to the administrators for
necessary actions. SNMP operates at the application layer of
TCP/IP suit standardized by Internet Engineering Task Force
(IETF) [12]. Each client (managed device) maintains its
configuration data in a hierarchical database called
Management Information Base (MIB). The MIB consists of
many objects, identified by unique Object Identifier (OID).
Each OID corresponds to specific configuration data such as
system boot time, system name, memory information, and
kernel version. An SNMP Manager (server) retrieves this
information by querying specific OID from the managed
device through Network monitoring tools like Nagios or
MRTG [13].

B. SNMP Architecture
The network management model for SNMP consists of the

following key elements [14].
 Manager is the administrative software installed on the

server to manage client devices. Manager queries agents
for required information or receives trap notification
when any changes or errors occur.

 The agent is a software process running on client
(managed) devices interacting with MIB and responding
to Manager queries.

 Management Information Base is a hierarchical database
that define OIDs representing various configuration
parameters of a managed device.

 The Network Management System (NMS) provides an
interface for network administrators to monitor and
control network devices.

 Managed Device is any IP-enabled node (e.g., computer,
camera, printer) monitored by NMS.

C. Supported Transport Protocol
SNMP can use both UDP and TCP to communicate across

a network. UDP is often preferred due to its light weight
design and low overhead in large-scale network. In situations
where reliable delivery and acknowledgment is required,

TCP can be used as an alternative for SNMP transport.

D. SNMP Version-3 Format
In order to enable communication between the Manager

and Agent, Protocol Data Units (PDUs) are encapsulated in
SNMP message format. The Field “Message Version
Number” refers to the SNMP version in use, such as
SNMPv1, SNMPv2 or SNMPv3. The field “Maximum
Message Size” represents the maximum allowable length of
an SNMP message, ensuring compatibility with network. The
“Message Security Model” specifies security framework
applied in the SNMP communication, such as User-based
Security Model (USM). The fourth byte of the security model
field “Security Flags”, which consists of four elements:
‘Auth’, ‘Priv’, ‘Reportable Flag’, and ‘Reserved’. These
flags indicate the security mechanisms used in SNMPv3
communication, including authentication (Auth), privacy
(Priv), message reporting (Reportable Flag), and a reserved
field for future use.

This study proposes utilizing one of the reserved SNMPv3
flags as Integrity Verification (IV flag). When the integrity
state of a node is queried, the IV flag is activated, signaling
the presence of verified integrity token in the SNMP
response.

E. SNMP Version-3 Security
SNMP version 3 was introduced to address the security

limitations of its predecessors by incorporating enhanced
security features such as confidentiality, integrity, and
availability [15, 16]. It achieves this by encapsulating SNMP
version 2 Protocol Data Units (PDUs) and implementing
advanced security mechanisms, including the User-based
Security Model (USM), Transport Layer Security (TLS) and
View Access Control Model (VACM) [17, 18].

In this research, SNMPv3 is implemented to enhance
network security by enabling integrity measurement.
SNMPv3 comprises the following key.
1) Security Subsystem: The security subsystem of the

SNMPv3 engine is responsible for ensuring
authentication and privacy for managed devices. In
SNMPv1 and SNMPv2, community strings are used for
authentication, whereas SNMPv3 implements user-based
authentication mechanism. The User-based Security
Model (USM) replaces plain text passwords with
cryptographic Message Digest 5 (MD5) or the Secure
Hash Algorithm (SHA-1) for authentication purposes
[19]. However, due to known vulnerabilities in existing
cryptographic algorithms, modern implementations
increasingly integrate stronger algorithms, such as
SHA-256 and AES encryption, to enhance security [20].

2) Access Control Subsystem: This module regulates access
to Management Information Base (MIB) objects,
ensuring that only authorized users can retrieve or modify
designated data [21]. It enforces access control by
restricting read/write operations based on predefined
permissions.

3) The Message Processing The message processing
subsystem is responsible for encoding SNMP messages
for transmission and decoding relevant information from
received messages. It may include different submodules
to handle different versions of SNMP, ensuring
compatibility and efficient message processing.

Journal of Advances in Computer Networks, Vol. 14, No. 1, 2026

2

4) The dispatcher component is responsible for sending and
receiving messages across local and global networks.
Identifies the SNMP version of each incoming message
and directs it to the appropriate message processing
module for handling.

III. TRUSTED COMPUTING
It is an advanced security paradigm that strengthens

existing frameworks by integrating a hardware-based
security mechanism. The Trusted Computing Group (TCG)
aims to enhance the security of computing platforms by
establishing standardization guidelines, originally developed
by the Trusted Computing Platform Alliance (TCPA) [22].
The Trusted Platform Module (TPM) is a dedicated hardware
security chip that employs cryptographic techniques to verify
the integrity and worthiness of software running on a device.
Additionally, TPM enhances the security of input/output
(I/O) operations and data storage by restricting access to
authorized entities. Beyond traditional computing devices,
TPM is increasingly utilized in cloud computing environment
to enable secure boot, remote attestation, and encryption [23].
The Trusted Computing Group (TCG) enhances computer
security privacy by developing standardized protocol and
specifications. Establishing trust in remote systems is crucial
for enterprise applications and protecting confidential data.
The Trusted Computing Group (TCG) addresses this through
an attestation mechanism that originates from the Hardware
Root of Trust and extends to the BIOS, bootloader, OS
kernel, and application layer to verify system integrity.

This research optimizes the attestation process by
restricting integrity verification to executable, binary files,
and library files, reducing computational overhead while
maintaining security. This targeted approach enables attack
detection at every stage of the system. A chain of trust is
initiated that verifies the entity responsible for measuring
trust to be itself verifiable and trustworthy.

IV. TRUSTED PLATFORM MODULE
The Trusted Platform Module (TPM) is a hardware

security chip that adheres to international standards to store
passwords, encryption keys, and digital certificates to
authenticate a platform [24]. Its technical specifications were
established in 2009 by the Trusted Computing Group, a
consortium of leading technology companies. Authentication
verifies a device’s identity, while integrity ensures that the
platform’s state remains unaltered. TPM 2.0 is the latest
version of TPM specification, supporting various
cryptographic algorithms including Advanced Encryption
Standard (AES), Elliptic Curve Cryptography (ECC), RSA,
and the SHA-2 family (e.g., SHA-256). It also enables secure
authentication and data integrity mechanisms using
HMAC [24]. Table 1 details the comparison of TPM 1.2 and
TPM 2.0. Hardware-based security is designed to address the
limitations of software-based security which is inherently
prone to failures and cyber-attacks, and
misconfiguration [25, 26]. Hardware-based mechanisms
significantly reduce the risk of unauthorized access to
sensitive information. The Trusted Platform Module (TPM)
checks system integrity by performing boot time verification
and detects unexpected configuration changes, ensuring that

only trusted code is executed during system start-up [27].
TPM-enabled systems are deployed to enhance security in

various applications that leverage TPM technology. These
include secure email by storing cryptographic keys, online
shopping, internet banking for secure transactions,
Bit-Locker for disk encryption, secure communication via
Trusted Network Connect (TNC) for secure network access,
and password management systems.

Table 1. TPM 1.2 and TPM 2.0 specification

Features TPM 1.2 TPM 2.0
Algorithm Support SHA-1, RSA SHA-256, RSA, ECC

Algorithm Flexibility Fixed algorithms Extensible algorithms
Key Hierarchies Single hierarchy Multiple hierarchies

PCR Support Fixed (24) Flexible
NVRAM Storage Limited Extended

Authorization HMAC-based Policy-based
OS and Hardware Limited Broad adoption

A. Secure Storage
TPM provides secure Platform Configuration Registers

(PCRs), which store integrity measurements in protected
memory space. These PCRs hold cryptographic hashes
representing system states. The TPM_Seal operations
encrypt sensitive data while binding it to specific PCR
values; the data can only be unsealed if the system integrity
matches the expected state [28]. For remote integrity
verification, a remote system challenges TPM, which
responds by signing the challenge with its private Attestation
Identity Key (AIK). The remote system then verifies this
signature using the TPM public key to verify the system
integrity before establishing communication [29].

B. Secure Execution
Attestation ensures the integrity of code and system

component. The secure execution engine in TPM in
conjunction with the Integrity Measurement Architecture
(IMA) measure the integrity of executable and stores these
hashes in PCRs, and in Stored Measurement Log (SMLs) for
audit purpose. The chain of trust begins at boot, where each
executable hash is matched against reference values for
integrity verification.

C. Key Generation
TPM generates various cryptographic keys for security and

attestation. These include Storage Root Key (SRK) for
protecting other keys, Endorsement Key (EK) for TPM
authenticity, Attestation Identity Key (AIK) for signing
integrity measurements, and other general keys for attestation
and encryption purposes.

D. Cryptographic Functions
TPM has many cryptographic functions, including the

Rivest Shamir Adleman (RSA) encryption for asymmetric
encryption and Secure Hash Algorithm 1 (SHA-1) for
cryptographic hashing. With TPM 2.O, Elliptic Curve
Cryptography (ECC) was introduced to enhance
cryptographic efficiency and security. The Input/Output
interfaces allow external applications to interact with these
functions. The following is a detailed explanation of each of
these functions.
 RSA Engine in TPM 2.0 is used for public key operations

such as digital signature verification, key exchange, and

Journal of Advances in Computer Networks, Vol. 14, No. 1, 2026

3

encryption/decryption. Additionally, it supports the
generation of RSA key pairs that can be utilized in these
operations.

 SHA Hashing TPM supports multiple cryptographic
hashing algorithms, including the Secure Hash Algorithm
(SHA) family. Earlier version of TPM relied on SHA-1;
however, due to its known vulnerabilities, it has been
deprecated. TPM 2.0 incorporates SHA-256, which offers
enhance security and greater resistance against
cryptographic attacks [30]. Additionally, The TPM
hashing module support sealing and unsealing data
operations, which protect sensitive data by binding it to a
specific platform state. This process use a proof key,
derived from public part of Attestation Identity Key
(AIK), to enable controlled access and delegation of
specific privileges based on predefined authorization
policies.

 The Random Number Generator (RNG) in TPM 2.0
produces highly unpredictable sequence essential for key
generation, nonce creation, and other cryptographic
operations. TPM 2.0 supports NIST-compliant random
number generation and policy-based entropy control,
enhancing security and flexibility in cryptographic
applications [31].

 Elliptic Curve Cryptography (ECC) is a public-key
cryptographic scheme that provides equivalent security to
traditional algorithms like RSA while requiring smaller
key size leading to improved computational efficiency,
reduced memory usage, and lower power consumption.
These attributes make ECC particularly well-suited for
embedded systems and Internet of Things (IoT) devices
[32].

V. INTEGRITY MEASUREMENT ARCHITECTURE
The Integrity Measurement Architecture (IMA) is a

module in the Linux operating system designed to measure
and verify the integrity of files and applications executed on a
system. It integrates with Trusted Platform Module (TPM) to
enforce system’s integrity during boot time and runtime. The
IMA maintains a secure measurement log, along with their
cryptographic hash values. This log is stored in system
memory while the hash values are extended in TPM’s
Platform Configuration Registers (PCRs). This allows
remote attestation and verification of system integrity at any
given time [33]. Fig. 1 illustrates the design and workflow of
Integrity Measurement Architecture. ima_tcb = 1 command
is used to enable IMA in Linux.

Fig. 1. Integrity measurement architecture design (34).

VI. LITERATURE COMPARISON WITH PROPOSED
ARCHITECTURE

This paper presents two main contributions. First, it
utilizes Trusted Platform Module (TPM) to verify system
integrity. Second, it extends the Simple Network
Management Protocol (SNMP) to facilitate remote reporting
of integrity measurements over a network. This approach
enables remote monitoring and management of the system’s
security postures. While various techniques exists for remote
platform attestation and reporting; this study specifically
integrates TPM and SNMP to achieve a secure and efficient
solution. The following section provides a detailed review of
existing literature, analyzing various methodologies and their
relevance with proposed approach.

Sailer et al. [34] developed the Integrity Measurement
Architecture (IMA) for Linux, enabling remote attestation
via the TPM. During boot, the system computes and stores
the measurements (i.e., binary hashes) of all its components
and applications in the Platform Configuration Registers
(PCRs). This aggregate value (hash) is presented to the
challenger, who recomputed and compares these values. A
match confirms the integrity of the system. However, IMA
primarily performs static integrity measurement, lacks the
capability to monitor runtime behavior, and is not very
practical in heterogeneous environments. PRIMA [35]
extends IMA by integrating information flow tracking in
Security Enhanced Linux (SELinux) for integrity
verification. PRIMA aims to reduce the overhead of the
policy-based measurement system by minimizing the number
of measurements. Unlike IMA, that measures all loaded
binaries, PRIMA enables selective integrity measurements,
allowing the verification of specific applications based on
policy rules.

Du et al. [36] proposed a model for runtime behavior
measurements in virtual machines, specifically in cloud
computing environments. Their approach involves a virtual
TPM (vTPM) to perform integrity verification. In contrast,
our research employs a physically installed TPM at the
endpoint to report the integrity of the target system.

In contrast to the work of Faisal et al. [37], which focuses
on establishing trust between users of Internet of Thing (IoT)
Devices, our research leverages TPM for integrity
verification in a distributed network. While both studies
utilize TPM for security purposes, the intended application
and implementation scope differ significantly.

Lu et al. [38] proposed a technique employing TPM to
prevent unauthorized access and mitigate malware attacks
using hardware-based security mechanism. Similarly, our
research uses hardware based security (i.e.,TPM) for
integrity verification.

Xing et al. [39] introduced an attestation technique for
guest Virtual Machines (VMs) termed Out-of-Box IMA
(OB-IMA). Unlike conventional approaches, OB-IMA
extends integrity verification to system configurations,
interpreters, scripts, and other critical files considered by
existing techniques. This flexible approach supports both
system-generated and manual defined measurements. The
technique has a key limitation as its exclusive focus on Guest
VMs integrity, lacking network-level reporting of system
integrity. Thom et al. [40] presented a technique for integrity
measurement that leverages the Trusted Platform Module

Journal of Advances in Computer Networks, Vol. 14, No. 1, 2026

4

(TPM) of the host device when a client device lacks a TPM
chip. This approach allows the clients to utilize the host’s
TPM device for trust services.

Matoušek et al. [41] extended SNMP’s capabilities to
monitor nodes in IoT such as IP cameras, sensors, actuators,
and intelligent devices integrating their reports into a remote
monitoring interface. However, this extension lacked security
measures particularly integrity and confidentiality of the
nodes. Our research extends SNMP to address these
concerns.

Kim et al. [42] proposed an approach that integrates
SNMP with an Intrusion Detection System (IDS) to detect
attacks in network traffic. This approach uses SNMP
Management Information Base (MIB) to create a lightweight
and fast attack detection system compared to traditional
packet-level IDS analysis, which is often resource-intensive
and prone to delayed reporting. However, this technique does
not incorporate integrity verification at the operating system
level. In contrast, our approach utilizes TPM-based integrity
verification.

Wang et al. [4], in their research patent on Network
Operation, Administration, and Maintenance (OAM) for
network devices proposed an extension of SNMP to report
fault alarm and messages for maintenance. Our research also
extends the SNMP to collect and report the integrity status of
nodes within a network.

Based on the existing literature discussed above, this
research proposes an OS-level integrity verification
mechanism using extended SNMP. This approach integrates
TPM with SNMP for remote monitoring of OS integrity. This
approach is lightweight and maintains network
confidentiality.

VII. METHODOLOGY
This section outlines the methodology applied in this

research. The implementation was carried out in a real world
environment without any simulation. The primary objective
is to enhance SNMP capabilities, enabling it to collect and
report integrity information alongside standard system status
metrics.

A. Proposed Architecture
This section provides a detailed description of the

proposed architecture and its components. This architecture
comprises two main entities: The challenger and the target
client, whose integrity status is verified. The developed
module enables the challenger to retrieve client integrity
metrics using extended SNMP. The client system is equipped
with TPM that generates cryptographic hashes for specified
files. These hashes are bonded with customized MIB within
the extended SNMP and returned as a response to the
challenger’s query. The complete architecture workflow is
illustrated in Fig. 2 and is detailed in the following sections.
1) Request Initialization: The challenger initiates the process

by sending an SNMP GET request to the target to retrieve
integrity measurements.

2) Authentication and Authorization: Upon receiving the
request, client system authenticates the challenger and, if
valid, extends the PCR values from TPM.

a) The TPM is configured to measure specific files such as
executable, binaries, and libraries. This is an internal

process of each node. This requests the TPM to provide
the latest hash value by reading PCRs.

b) The TPM respond by current PCR hash value i.e.,
computes hashes for the targeted files.

3) All these computed hashes are extended into PCR-10
using PCR_EXTEND command ensuring cumulative
integrity measurement. The output is redirected to a text
file.

4) A custom Hash-OID binding Function associates the
retrieved PCR value with an SNMP-reserved OID
(Object Identifier), allowing it to be queried like other
SNMP standard OIDs.

5) The SNMP Agent now has the hash value stored in the
MIB, making it available for remote querying.

6) The SNMP agent responds with the bound hash value
sending to challenger for verification.

7) Integrity Verification on Challenger side: A Python based
“Hash-Appraisal Function” compares the retrieved hash
in with a previously stored reference hash in the database.

8) Integrity Verification: The function return TRUE if the
hashes match, indicating client integrity is maintained or
FALSE, if there is a mismatch indicating possible
tampering.

9) The verification result is sent to the Sub-Manager for
integration with Nagios.

Fig. 2. Proposed architecture.

B. Entities in the Proposed Architecture
The proposed architecture includes entities responsible for

measuring and verifying system integrity, as outlined below.
 Challenger: The challenger is an administrative system

that verifies the integrity of clients. It initiates
SNMP-GET request to retrieve integrity-related
information from managed device.

 Target: The target refers to a TPM enabled client device
whose integrity is being verified and monitored.

 SNMP Manager: This module, installed on the challenger
system, serve as the main SNMP component that sends
the request to the SNMP agent on the client device.

 SNMP Agent: SNMP agent is a module installed on
managed/client systems that interact with Management
Information Base (MIB). For this research, the agent MIB
has been extended with a custom Object Identifier (OID)
to support integrity reporting

 Trusted Platform Module: In this research, TPM
generates integrity measurements by hashing system

Journal of Advances in Computer Networks, Vol. 14, No. 1, 2026

5

critical files. These hashes are bounded to SNMP custom
Object Identifier for reporting.

 Nagios Server: An open-source monitoring tool, is
configured to graphically display system integrity
Reports for system administrator.

C. Target System Configuration
The TPM enabled system measures the integrity of

selected binaries, executable, and libraries and stores it in
Platform Configuration Registers (PCRs). The
PCR_EXTEND command updates a PCR by appending a
new calculated hash value. The PCR_QUOTE command
signs the value using Attestation Identity Key (AIK) [44],
allowing verification on the challenger side using AIK public
key. This aggregate value is then associated with reserved
OID through Agent MIB to be matched at the challenger side
for verification. A timestamp and nonce ensures response
validity and prevent reply attacks.
 Hash-OID Binding Module: A python-based function 1 is

designed that maps TPM generated integrity values to
designated SNMP-OID. This allows the integrity status to
be queried remotely from challenger without impacting
the protocol performance or altering its core functionality.

D. Challenger Side
This section details challenger system and its

configuration, and custom-developed functions. The initial
integrity status of each registered node is in hashes database
as trusted hashes or signatures. Incoming new hashes from
clients are matched and verified against these trusted hashes
to determine system integrity.
 Hash Appraisal Function: A Python module validates the

integrity status by comparing the incoming hash from
clients against stored hashes the database. A match
confirms the target’s integrity while a mismatch indicates
potential compromise. The function then forwards the
result to SNMP Sub-Manager.

E. Nagios Plugin for Monitoring
Nagios is an open-source network monitoring tool that

oversees overall network. It provides real-time alerts on
integrity violation or system failures allowing administrator
to respond promptly [45–49]. In this research a plugin is
developed to retrieve and visualize client integrity status
using SNMP. The plugin interact with SNMP Sub-Manager
within Nagios core. Ensuring continuous monitoring and
timely detection of integrity breaches.

VIII. IMPLEMENTATION AND EXPERIMENTAL RESULTS
This section is structured into two parts: The first outlines

the operating system setup and configuration, including
network environment setting, installation and configuration
of net-SNMP on both server and client sides. The second part
presents the testing output obtained during implementation
validating the proposed architecture’s effectiveness.

A. Hardware and Software Stack
The proposed architecture is deployed on Linux due to its

open-source nature, allowing kernel level modification to
meet specific requirements. TPM2.0 tools provide command
line utilities for to fetch PCR values, Net-SNMP is deployed
to extend and enhance SNMP functionalities for integrity

verification. The hardware and software supporting this
implementation is detailed in Table 2.

Table 2. Hardware and software stack specification for the proposed research
S.No Component Role and Specification

1 Processor
Server - Intel Core i7 (8-Core, 3.0

GHz), Client - Intel Core i5
(4-Core, 2.5 GHz)

Hardware
Specifications

2 Memory
(RAM) 16 GB (Server), 8 GB (Client)

3 Storage 512 GB SSD (Server), 256 GB
SSD (Client)

4 TPM Chip
TPM 2.0 (Hardware-based),

computes PCR values for integrity
verification.

5 Network
Bandwidth 1 Gbps Ethernet.

1 CentOS 8.0 Linux OS with TPM 2.0 support.

Software Stack

2 TPM 2.0
Tools

Command-line utilities used for
fetching PCR values for integrity

verification.

3 net-SNMP
5.8

Implements SNMP with support for
custom MIB extensions.

4 Nagios 4.3 Network monitoring tool with a
custom plugin.

5 Python 3.11
Programming language for
Hash-Appraisal and SNMP

automation scripts.

B. Implementation Steps
The implementation phase follows a structured approach

to ensure secure, lightweight, and scalable integrity
verification for distributed systems. The process involves
setting up the necessary environment, configuring required
services, and ensuring secure and reliable communication
between the entities. The following sections provide a
detailed breakdown of the implementation architecture.

C. Configuration of SNMP
Net-SNMP is an open-source network management suit

that provides essential utilities for management and
monitoring of network devices. It is freely available and can
be downloaded from its official repository at
SourceForge.net.
 Creating SNMP V3 users: Users must be defined for

authentication in SNMPv3. This is done using the;
net-snmp-create-v3-user command, which configures
users with AES encryption and SHA authorization in
compliance with SNMPv3 policies.

Note: SSL is enabled for secure communication.
 Verifying SNMPv3 Security: To verify SNMPv3 security,

some dummy requests are sent to the client, and its reply
is captured. These packets are analyzed and proved
encrypted using the network monitoring tool
“wire-shark”.

 Extending SNMP: SNMP is extended using SNMP MIB
(Management Information Base) modules. MIB modules
define the objects and variables that can be accessed using
SNMP. The author created an OID in agent’s MIB and
then assigned TPM generated hash value with this OId,
Heo et al. [47] have also utilized Extended-SNMP to
manage digital convergence devices. A new Object ID
(1.3.6.1.4.1.61096) is reserved from registration authority
https://www.iana.org. The MIB file is edited and
compiled to assign the reserved OID. snmpd service is
restarted to update the MIB file. PCR Quote value is

Journal of Advances in Computer Networks, Vol. 14, No. 1, 2026

6

http://www.iana.org/

associated with this extended reserved object (OID)
which can be requested from the challenger side.

D. Hash-OID Binding Function
Algorithm 1 outlines the binding process between

TPM-generated hash measurements with custom SNMP
Object ID (1.3.6.1.4.1.61096). These integrity measurements
are later requested by the server and matched against the
referenced hashes stored in the server side database. In Line
1, the algorithm imports the necessary Operating System and
SNMP libraries to enable communication with the Operating
System and SNMP configuration files. The Get() function
retrieve the TPM generated hashes from Platform
Configuration Registers and present it to the main function.
In Step 6, the hash is assigned to a variable, which is then
bound with SNMP OID in Steps 7 and 8, making it accessible
to remote integrity queries.

Mathematical Eq. (1) formally defines the module, where
OIDbound represents the customized OID within the
extended MIB, mapped to integrity measurements.

Hagg denotes the aggregate hash value obtained from PCR.
OIDreserved refers to the predefined OID allocated storing
integrity-related measurements. The function 𝑓𝑓 (⋅) defines the
binding operation that associates the computed aggregated
hash with the designated OID, ensuring seamless integration
within the SNMP framework.

 0IDbound = f (Hagg.OIDreserved) (1)

Algorithm 1. Hash OID binding Function
1 Input PCR quote generated by TPM at agent side.
2 Output Bind and handover the hash to snmp.
3 Import: os.sys, net.snmp; /*imports os and
snmp */
4 Function: hash-quote (); /*user function*/
5 Get: pcr_quote; /*getting pcr value from
agent*/
6 Read: pcr_quote; /*open the quote*/
7 Return: quote; /*return the hash quote*/
8 var ← hash (); /*assign the hash to a variable*/
9 Set: oid ← var; /*Bind variable with Oid*/
10 Get: snmpPDU (hash); /*snmp command for server
side*/

E. Hash Appraisal Function
The preceding section described the module responsible to

retrieve the aggregate value from target system to the
challenger. To evaluate whether the integrity of a given client
is upheld or compromised, the hash appraisal function
perform a comparison between recently retrieved hash and
the referenced hash stored in the server side database.

As defined in Eq. (2), I denotes the Integrity status, where
I = 1 = indicates the integrity is maintained, and I = 0
signifies a compromised state. Hreceived represents the hash
value received from the client, while Hstored refers to the
pre-stored reference hash in the database, used for integrity
verification.

 I =1, if Hreceived = Hstored (2)

I = 0, otherwise

F. Flow of the Protocol
The complete protocol workflow is depicted in Fig. 3,

illustrating the interaction between challenger and target
system. The challenger initiate an SNMP request to verify
The integrity of a client by communicating with the SNMP
agent through the SNMP Manager. The agent processes
requests only from authenticated users, verifying its
credentials, security level, and encryption setting as per
SNMP v3 configuration. The TPM generated aggregate value
extended from Platform Configuration Registers (PCRs).
This value is then associated with custom reserved SNMP
OID through the hash-Oid binding function. On receiver side
hash-appraisal function match this received hash with already
stored reference hashes in the database on the server side.
Based on this comparison, a True/False Boolean result is
returned. Finally, the Nagios server as shown in Fig. 4,
graphically display the real time integrity status across the
network, providing administrators with centralized visibility
and alerting capabilities.

Algorithm 2. Algorithm for Hash Appraisal Function
1 Input Gets two hashes in the form of text file
2 Output Returns “matched” or “Un-matched”
3 Import: os.sys, net.snmp ; /*imports os and snmp*/
4 fopen(stored_hashes) ; /*reading good hashes */
5 while(eof) ; /*repeat till end*/
6 explode(stored_hash); /*read complete file*/
7 file1←stored_hash[] ; /*assign hash to var */
8 End loop ; /*loop completed*/
9 fclose(stored_hash) ; /*closing file*/
10 fopen(fetched_hash) ; /*opens newly fetched hash
by snmp*/
11 while(eof) ; /*repeat reading the til end */
12 explode(fetched_hash); /*read fetched hash*/
13 file2←fetched_hash[] ; /*assign hash to var*/
14 End loop ; /*loop completed*/
15 fclose(fetched_hash) ; /*close file*/
16 if file1[] == file2[] ; /*appraise both files*/
17 Display “Hahses Matched” ; /*Files are same*/
18 Display “Hahses Not Matched”; /*Files are different*/

Fig. 3. Flow of the protocol.

G. Configuring Display Interface
The final stage of the proposed architecture involved

presenting the client integrity reports in a graphical user
interface. As previously discussed, Nagios has been selected
as the monitoring and display interface for the system

Journal of Advances in Computer Networks, Vol. 14, No. 1, 2026

7

administrator. This section outlines the steps taken to
configure the Nagios plugin for integrity reporting.

H. Nagios Core Configuration
Nagios core version 4.3.1 was selected as a stable and

reliable monitoring platform, to enable full functionality, the
NRPE plugin (Nagios Remote Plugin Executor) and all
supporting packages were installed. These included a
C-compiler, C standard Library, development tools, SSL
libraries and extended internet service daemon (xinetd).
These components ensure that Nagios core operates securely
with client system to collect and display real time integrity
status.

Fig. 4. Client integrity status.

 To specify which systems Nagios should monitor, the

configuration file nagios.cfg must be configured. The
path for the configuration files and the host definition
configuration file is defined as:
cfg_dir=/etc/nagios/servers.

 NRPE Configuration Nagios Remote Plugin Executor
(NRPE) is installed on the client side to collect system
level metrics and transmit them to Nagios Core on the
server. NRPE use TCP port 5666 and it must be open to
allow connections from server via
allowed_hosts=SERVER_IP in nrpe.cfg.

 Integrity check Plugin Nagios being open-source and
modular allows for extensive customization. A custom
plugin was developed in python and integrated in Nagios.
This plugin queries the hash-appraisal function and get an
appropriate Nagios exit code (0 for OK, 1 for WARNING,
2 for CRITICAL, and 3 for UNKNOWN).

Once configuration is completed, save the files and restart
the NRPE and Nagios core services.
 After refreshing Nagios Core, the integrity monitoring

result for the DNS server is displayed in Fig. 4. The
top-level message under the group, “Host Integrity Status
Information”, is “Verified”, indicating that no integrity
violations has been detected for the corresponding client
system.

 If the integrity of the client is compromised, Nagios will
display “Compromised” in place of “Verified”. This
status serves as an alert, indicating that the client
measured hash value do not match the trusted value stored
in the server database.

IX. RESULTS
The proposed architecture is evaluated from both security

and performance perspectives. As is often the case in secure

systems, enhancing security mechanism can introduce a
degree of performance overhead. Since features such as
cryptographic operations, hash binding and comparison
consumes additional CPU cycles, memory and network
bandwidth. Conversely, optimizing for performance by
reducing these measures may reduce security posture of the
system. Therefore, a trade-off must be made between security
and performance based on the specific needs and
requirements of the system.

A. Performance with Integrity
The integration of integrity verification into SNMP

framework introduces minimal impact on overall
performance. However, there is a computational cost
associated with increased security. During initial stages of
system booth, when only a limited number of applications are
active, the response time remains fast, as the number of active
application increases, the integrity measurement process
becomes more time-consuming, leading to increased
response latency as illustrated Fig. 5. during initial
measurements, both standard SNMP and the proposed
Extended SNMP responded in comparable latency, however
in the later half of the experiment when a bulk of requests
were queried, a marginal delay if approximately 50–60 ms
was observed in Extended-SNMP. This difference is
considered negligible and may be attributed to transient
network congestion and increased system load. To test the
impact on performance, snmpget and snmpget-next requests
for the integrity-specific OID (1.3.6.1.4.1.61096) commands
in net-snmp are used, and the latency is noted.

Fig. 5. Latency graph shows 0.5% packet loss.

While the impact on performance remains small under

normal network conditions, it could become more
pronounced in environments characterized by high packet
loss, network congestion, or low throughput. The effect of
bulk SNMP requests on latency showing that bulk operations
introduce additional delays compared to individual queries.
This behavior is expected due to the increased processing and
transmission load associated with bulk data transfers.

B. Performance with Frequency
The frequency of requests for integrity status can

significantly impact the amount of network traffic generated
over time. A high frequency polling rate–such as querying
the integrity status every minute–can introduce significant
traffic overhead. Especially in bandwidth-constrained or high

Journal of Advances in Computer Networks, Vol. 14, No. 1, 2026

8

utilization network environment. Conversely, A low
frequency polling strategy, such as querying once per hour,
considerably reduce traffic but may compromise the system
responsiveness to integrity violation.

Therefore, selecting an appropriate query interval involve
a trade-off between detection timeline and communication
overhead, considering the specific requirements and
constraints of the network being monitored. This scenario is
illustrated in Fig. 6.

Fig. 6. Frequency graph.

C. Security
The proposed architecture enhances SNMP by introducing

integrity measurement capabilities without altering its core
security mechanisms. SNMPv3 is selected due to its robust
support for authentication, privacy and message integrity,
making it a suitable base for building a trusted network
monitoring solution.
 Confidentiality: The security subsystem in this

architecture uses the SNMPv3 module, which ensures
complete confidentiality employing hashing techniques
and Transport Layer Security (TLS) encryption to protect
data in transit. It is worth noting that no modifications
have been made to the security subsystem of SNMP
during this study. Therefore, the architecture ensures
complete confidentiality of data at both the system and
network levels.

 Integrity: This research’s primary focus and contribution
is the implementation of integrity verification through the
utilization of the TPM chip by the Extended SNMP
module. By leveraging this technology, any alteration to
even a single bit of a file can result in a complete hash
change, thereby enabling comprehensive integrity checks.

 Availability: The proposed architecture has been
designed in such a way that it does not affect the
availability of the overall network. The integrity
information is made available, along with other network
status information, through SNMP on a functioning
network.

X. CONCLUSION
This research extends the capabilities of SNMP by

integrating TPM based integrity verification alongside
traditional system monitoring. The MIB of the SNMP is
extended to associate the hash of concerned files from PCRs.
This hash is assigned to a reserved SNMP OID and sent to the
challenger, where this value is compared with some known
good and trusted hashes of the same files. The integrity of

these systems is maintained by comparing hashes. A Nagios
plugin is configured to periodically report the integrity status
to the system administrator regarding targeted clients. The
research focuses on integrity verification based on TPM.
However, not all IP-based nodes have TPM chips installed,
which means that the integrity of those machines cannot be
measured without TPM. Therefore, the architecture proposed
in the research is limited to devices with installed TPM chips.

This design can be further improved by incorporating
machine learning techniques to automate real-time detection
and response to integrity attacks. Machine learning modules
can enhance decision-making by providing insights into the
root cause of integrity breaches and suggesting appropriate
mitigation measures.

CONFLICT OF INTEREST
The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS
MA analysed the data, wrote and reviewed the paper,

conducted the research and experiments; FW supervised,
reviewed and proofread the article; AS analysed the data,
wrote and reviewed the paper; MK conducted the research
and experiments; MIS proofread the article. All authors had
approved the final version.

REFERENCES
[1] M. Riek and R. Böhme, “The costs of consumer-facing cybercrime: An

empirical exploration of measurement issues and estimates,” Journal
of Cybersecurity, vol. 4, 2018.

[2] T. Ali, J. Ali, T. Ali, M. Nauman, and S. Musa, “Efficient, scalable and
privacy preserving application attestation in a multi stakeholder
scenario,” in Proc. International Conference on Computational
Science and Its Applications, Springer, 2016, pp. 407–421.

[3] W. Charoenwet, P. Thongtanunam, V.-T. Pham, and C. Treude,
“Toward effective secure code reviews: An empirical study of
security-related coding weaknesses,” arXiv preprint,
arXiv:2311.16396, 2024.

[4] S. Semenov, V. Davydov, N. Kuchuk, and I. Petrovskaya, “Software
security threat research,” in Proc. 2021 XXXI International Scientific
Symposium Metrology and Metrology Assurance (MMA), 2021, pp.
1–4.

[5] S. Aslan, S. S. Aktuğ, M. Ozkan-Okay, A. A. Yilmaz, and E. Akin, “A
comprehensive review of cyber security vulnerabilities, threats, attacks,
and solutions,” Electronics, vol. 12, no. 6, 2023.

[6] P. Sun, Y. Wan, Z. Wu, and Z. Fang, “A survey on security issues in
IoT operating systems,” Journal of Network and Computer
Applications, 103976, 2024.

[7] O. Demigha and R. Larguet, “Hardware-based solutions for trusted
cloud computing,” Computers & Security, vol. 103, 2021, 102117.

[8] Trusted Computing Group. TC trusted computing. [Online]. Available:
http://www.trustedcomputinggroup.org/

[9] Y. Adıgüzel and S. B. Yalçın, “Secure boot design for a RISC-V based
SoC and implementation on an FPGA,” in Proc. 2024 32nd Signal
Processing and Communications Applications Conference (SIU), 2024,
pp. 1–4.

[10] T. Morris, “Trusted platform module,” in Encyclopedia of
Cryptography, Security and Privacy, Springer, 2024, pp. 1–5.

[11] A. Muñoz, A. Farao, J. R. C. Correia, and C. Xenakis, “ICITPM:
Integrity validation of software in iterative continuous integration
through the use of Trusted Platform Module (TPM),” in Proc.
Computer Security: ESORICS 2020 International Workshops, Springer,
2020, pp. 147–165.

[12] S. Tyata and A. Barsoum, “Network management protocols: Analytical
study and future research directions,” Journal of Network and
Information Security, vol. 9, no. 2, pp. 9–13, 2021.

[13] J. Liu, C. Qu, and T. Zhou, “A novel cloud computing platform
monitoring system based on Nagios,” in Proc. 2023 3rd International
Conference on Smart Data Intelligence (ICSMDI), IEEE, 2023, pp.
169–172.

Journal of Advances in Computer Networks, Vol. 14, No. 1, 2026

9

http://www.trustedcomputinggroup.org/

[14] Y.-C. Tian and J. Gao, “Network management architecture,” in
Network Analysis and Architecture, Springer, 2023, pp. 321–359.

[15] W. Stalling. SNMP architecture. [Online]. Available:
http://www.net-snmp.org/docs/mibs/

[16] E. Gamess and S. Hernandez, “Performance evaluation of
SNMPv1/2c/3 using different security models on Raspberry Pi,”
International Journal of Advanced Computer Science and Applications
(IJACSA), vol. 12, issue 11, 2021.
doi: 10.14569/IJACSA.2021.0121101

[17] J. Schönwälder and V. Marinov, “On the impact of security protocols
on the performance of SNMP,” IEEE Transactions on Network and
Service Management, vol. 8, no. 1, pp. 52–64, 2011.

[18] R. Jatothu and G. Narasimha, “Enhancement in SNMP services with
improved security with the impact of SSH, TLS and DTLS protocols,”
in Proc. 2017 IEEE International Conference on Power, Control,
Signals and Instrumentation Engineering (ICPCSI), 2017, pp.
888–895.

[19] IETF, “User-based Security Model (USM) for version 3 of the Simple
Network Management Protocol (SNMPv3),” Tech. Rep. RFC 3414,
Dec. 2002.

[20] H. Handschuh, “SHA-0, SHA-1, SHA-2 (Secure Hash Algorithm),” in
Encyclopedia of Cryptography, Security and Privacy, Springer, 2024,
pp. 1–5.

[21] IETF, “View-based Access Control Model (VACM) for the Simple
Network Management Protocol (SNMP),” Tech. Rep. RFC 3415, Dec.
2002.

[22] P. C. Zatko and D. Rizzo, “Trusted computing,” U.S. Patent 9,569,638,
Feb. 14, 2017.

[23] S. Hosseinzadeh, B. Sequeiros, P. R. Inácio, and V. Leppänen, “Recent
trends in applying TPM to cloud computing,” Security and Privacy, vol.
3, no. 1, 2020.

[24] S. Wesemeyer, C. J. Newton, H. Treharne, L. Chen, R. Sasse, and J.
Whitefield, “Formal analysis and implementation of a TPM 2.0-based
direct anonymous attestation scheme,” in Proc. the 15th ACM Asia
Conference on Computer and Communications Security, 2020, pp.
784–798.

[25] M. Alam, T. Ali, S. Khan, S. Khan, M. Ali, M. Nauman, A. Hayat, M.
Khurram Khan, and K. Alghathbar, “Analysis of existing remote
attestation techniques,” Security and Communication Networks, vol. 5,
no. 9, pp. 1062–1082, 2012.

[26] R. A. Popa, “Confidential computing or cryptographic computing?”
Communications of the ACM, vol. 67, no. 12, pp. 44–51, 2024.

[27] W. Arthur, D. Challener, and K. Goldman, A Practical Guide to TPM
2.0: Using the New Trusted Platform Module in the New Age of
Security, Springer Nature, 2015.

[28] Trusted Computing Platform. (2020). TPM profile specification for
TPM 2.0. [Online]. Available:
https://trustedcomputinggroup.org/wp-content/uploads/TCG-PC-Clien
t-Platform-TPM-Profile-for-TPM-2.0-Version-1.06-Revision-32_5Ap
ril24.pdf

[29] P. G. Wagner, P. Birnstill, and J. Beyerer, “Establishing secure
communication channels using remote attestation with TPM 2.0,” in
Proc. the Conference Security and Trust Management (STM 2020),
2020.

[30] N. Ashraf, A. Masood, H. Abbas, R. Latif, and N. Shafqat, “Analytical
study of hardware-rooted security standards and their implementation
techniques in mobile,” Telecommunication Systems, vol. 74, pp.
379–403, 2020.

[31] A. A. Kuznetsov, O. V. Potii, N. A. Poluyanenko, Y. I. Gorbenko, and
N. Kryvinska, “Comparative analysis of determined generators for
random bits, defined in the NIST special publication 800-90A,” in
Stream Ciphers in Modern Real-time IT Systems: Analysis, Design and
Comparative Studies, 2022, pp. 165–179.

[32] K. Shah, A. Bhadauria, P. Thakkar, J. Shah, and H. Kaur,
“Advancements in elliptic curve cryptography: A review of theory and

applications,” in Proc. the 2024 Parul International Conference on
Engineering and Technology (PICET), 2024, pp. 1–6.

[33] F. Bohling, T. Mueller, M. Eckel, and J. Lindemann, “Subverting
Linux integrity measurement architecture,” in Proc. the 15th
International Conference on Availability, Reliability and Security,
2020, pp. 1–10.

[34] R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn, “Design and
implementation of a TCG-based integrity measurement architecture,”
in Proc. 13th USENIX Security Symposium, 2014, vol. 13, pp.
223–238.

[35] T. Jaeger, R. Sailer, and U. Shankar, “PRIMA: Policy-reduced
integrity measurement architecture,” in Proc. the Eleventh ACM
Symposium on Access Control Models and Technologies, 2006, pp.
19–28.

[36] R. Du, W. Pan, and J. Tian, “Dynamic integrity measurement model
based on vTPM,” China Communications, vol. 15, no. 2, pp. 88–99,
2018.

[37] M. Faisal, I. Ali, M. S. Khan, S. M. Kim, and J. Kim, “Establishment of
trust in Internet of Things by integrating trusted platform module: To
counter cybersecurity challenges,” Complexity, 2020.

[38] D. Lu, R. Han, Y. Wang, X. Dong, X. Ma, T. Li, and J. Ma, “A secured
TPM integration scheme towards smart embedded system based
collaboration network,” Computers & Security, vol. 97, 101922, 2020.

[39] B. Xing, Z. Han, X. Chang, and J. Liu, “OB-IMA: Out-of-the-box
integrity measurement approach for guest virtual machines,”
Concurrency and Computation: Practice and Experience, 2014.

[40] S. Thom, R. Aigner, M. Kapadia, S. H. Schaefer, and R. K. Spiger,
“Utilizing a Trusted Platform Module (TPM) of a host device,” U.S.
Patent 10,212,156, Feb. 19, 2019.

[41] P. Matoušek, O. Ryšavý, and L. Polčák, “Unified SNMP interface for
IoT monitoring,” in Proc. the 2021 IFIP/IEEE International
Symposium on Integrated Network Management (IM), IEEE, 2021, pp.
938–943.

[42] M.-S. Kim, D. P., J. Yu, and H. Lee, “Traffic flooding attack detection
with SNMP MIB using SVM,” Computer Communications, 2008.

[43] L. X. N. Wang, “Network operation administration and maintenance
(OAM) method, apparatus, and system,” U.S. Patent 10,237,124, Mar.
2019.

[44] L. Chen and M. Young, Trusted Systems: Second International
Conference, INTRUST 2010, Beijing, China, December 13-15, 2010,
Revised Selected Papers, Springer Science & Business Media, 2011.

[45] G. Katsaros, R. Kübert, and G. Gallizo, “Building a service-oriented
monitoring framework with REST and Nagios,” in Proc. the 2011
IEEE International Conference on Services Computing (SCC), IEEE,
2011, pp. 426–431.

[46] F. Wahab, S. Ma, X. Liu, Y. Zhao, A. Shah, and B. Ali, “A ranked
filter-based three-way clustering strategy for intrusion detection in
highly secure IoT networks,” Computers and Electrical Engineering,
vol. 127, 110514, 2025.

[47] G. Heo, E. Kim, and J. Choi, “An extended SNMP-based management
of digital convergence devices,” in Proc. the 2010 IEEE 10th
International Conference on Computer and Information Technology
(CIT), IEEE, 2010, pp. 2540–2547.

[48] F. Wahab, S. Ma, Y. Zhao, and A. Shah, “An explainable three-way
neural network approach for intrusion detection in IoT ecosystem,”
Internet of Things, 101722, 2025.

[49] A. Shah, N. Azam, B. Ali, M. T. Khan, and J. Yao, “A three-way
clustering approach for novelty detection,” Information Sciences, vol.
569, pp. 650–668, 2021.

Copyright © 2026 by the authors. This is an open access article distributed
under the Creative Commons Attribution License which permits unrestricted
use, distribution, and reproduction in any medium, provided the original
work is properly cited (CC BY 4.0).

Journal of Advances in Computer Networks, Vol. 14, No. 1, 2026

10

https://creativecommons.org/licenses/by/4.0/

