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Abstract—Software-Defined Networking (SDN) introduces a
paradigm shift in network management by decoupling the
control and data planes, thereby enabling centralized,
programmable network control. However, the dynamic and
complex nature of modern traffic demands adaptive and
intelligent decision-making beyond traditional rule-based
systems. This paper explores the integration of Artificial
Intelligence (AI) techniques—particularly supervised learning
algorithms—into the SDN control architecture to improve
performance, efficiency, and automation. The study provides
an overview of SDN architecture and the OpenFlow protocol,
followed by an empirical evaluation using real traffic scenarios.
Multiple AI models including Support Vector Machine (SVM),
Naive Bayes (NB), and Nearest Centroid were tested on a
software-defined testbed. Performance metrics such as
classification accuracy, throughput, latency, packet loss, and
controller decision time were analyzed. Results demonstrate
that Al integration leads to significant improvements across all
metrics, validating the potential of AI-SDN synergy in creating
intelligent and self-optimizing networks.
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I. INTRODUCTION

In the last years, many researches are presented many
solutions of complex tasks of modern network application
like traffic engineering, network optimization and
orchestration [1]. One of the most famous solutions is
proposed To solve these problems is Software-Defined
Networking (SDN) which maintains a global view of
network states and provides a flow-level control of the
underlying layers [2]. This idea caused a dramatically
change in the way how networks are designed and managed.
The SDN paradigm separates the control plane from the
data plane, which results in achieving much faster and
dynamic approach in compared with a conventional
network [3].

Recently, the artificial intelligence algorithms have
started to play a significant role in most of modern systems
such as intelligent transportation, which gives us the chance
to improve the performance of the current computer
networks. The integration between the concept in SDN
paradigm and Al techniques can lead to more adaptive
behavior of network elements [4]. In this work, however, we
provide basic relationships between the significant role of
Al in SDN paradigm as:

1) To provide a detailed architectural understanding of

Software-Defined Networking and its foundational

protocols, especially OpenFlow.
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2) To explore the role of Artificial Intelligence in
enhancing SDN functionality, including its ability to
enable adaptive routing and decision-making.

3) To evaluate the performance impact of integrating Al
models (e.g., Support Vector Machine (SVM), Naive
Bayes, Nearest Centroid) into SDN controllers.

4) To compare traditional SDN with Al-augmented SDN
systems across critical network metrics such as accuracy,
delay, throughput, and loss rate.

II.  ARCHITECTURAL DESIGN OF SDN

Open Networking Foundation (ONF) describes a high
level architecture of SDN, which functionally and vertically
split into three layers.

1) Infrastructure layer: This layer consists of forwarding
devices like the physical switch, router, etc. Software
switches which can be accessible via open interfaces,
also part of this layer. This layer is considered as
forwarding layer since it allows packet switching and
forwarding.

2) Control Layer: The control layer is also referred as
control plane that comprises a set of software-enabled
SDN controllers. This layer allows the network
administrator to apply custom policies to the physical
layer devices.

3) Application layer: Application layer deals with end user
business applications that utilize the SDN services.
Business application such as energy efficient networking,
security monitoring, network virtualization etc, as shown
in Fig. 1 [5].
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Fig. 1. The basic SDN architecture.
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III.

OpenFlow (OF) is being continuously evolved and
standardized by Open Networking Foundation (ONF). OF
supplys an abstraction layer that enables the SDN controller
to securely communicate with OF-enabled forwarding
elements [1]. OpenFlow has turned out to be the de-facto
standard for south bound APIs used in SDNs. A typical OF-
enabled switch handles new coming packets based on its
flow table. Fig. 2 shows the areas of matching rules part in
OF version 1.0.0. The incoming packets are described as 3
fields which are [5]:

OPENFLOW PROTOCOL

1) Match fields: to match against packets depending on
Fig. 3 [6].

2) Counters: to update for matching packet.

3) Actions: to apply to matching packets.

In order to understand the SDN architecture, it is
important to recall its basic operation. Fig. 4 [4] presents the
working procedures of the OpenFlow-based SDN network.
Each OpenFlow switch has a flow table and uses the
OpenFlow protocol to communicate with the SDN
controller [3] as shown in Fig. 5.
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The messages transmitted from OpenFlow-based according to the actions in matched flow entry. Or else, the

switches to the software-based controller are standardized
by the OpenFlow protocol. The flow table in the OpenFlow
switch is comprised entries to determine the of flow
processing actions of different packets on the data plane.
When an OpenFlow switch receives a packet on the data
plane as in Fig. 5 [3], the packet header fields will be
extracted and matched against flow entries. If a matching
entry is found, the switch will process the packet locally
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switch will forward an OpenFlow Packetln message to the
controller (arrows 2 and 5). The packet header (or the whole
packet, optionally) is included in the OpenFlow Packetln
message. Then, the controller will send OpenFlow
FlowMod messages to manage the switch’s flow table by
adding flow entries (arrows 3 and 6), which can be used to
process subsequent packets of the flow [4].
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and lastly arrive at their destination host. The total delay of

Controller 192.68.19.104/24 SDN switch includes [7]:
Open flow | 3 (1) Stack Delay (StkD) is the delay associated with the
-SW':Ch_ protocol stack of source and destination host.
ned (2) Transmission Delay (TD) on the source and
et \0 Hosts destination host.
/ 192.68.19.101/24 (3) Propagation Delay (PD) on transmission medium.
(4) Switch Delay (SD) caused by packet forwarding in

W‘ the switches [7].
Flow_poq The end-to-end delay can be showed by the following
\ Eq. (1) [7-16].
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Fig. 5. The communication establishment between host and the of network. Dgyiten = i +t; + h:_"p + Wiup +C + Widown + hldOW” 2)

If the packet matches an entry in the flow table, the delay

IV. SIMPLE EXAMPLE IN SDN NETWORK model can be simplified as
As we see in Fig. 6 the delay end-to-end packet traversal.
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Fig. 6. The sketch end to end delay of SDN network.
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V. ARTIFICIAL INTELLIGENCE IN SDN

Recently, the soft computing and artificial intelligence
methods have started to play a significant role in most of
modern systems such as intelligent transportation. This
gives us the chance to improve the performance of the
current computer networks. The integration between the

abstraction concept in SDN paradigm and Al techniques as
shown in Fig. 7 [8] can lead to more adaptive behavior of
network elements. Also it will introduce new mechanisms
for dealing with both traditional network issues and SDN
related new ones as illustrated in Fig. 8 [6].
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Fig. 7. Software Defined Network (SDN) with the proposed Artificial Intelligence Enabled Routing (AIER).
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Fig. 8. Common machine learning algorithms applied in SDN.

VI. COMPREHENSIVE PERFORMANCE ANALYSIS, RESULTS

AND DISCUSSION

To evaluate the integration of Artificial Intelligence (AI)
into Software Defined Networking (SDN), a series of
comprehensive performance analyses were conducted. This
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section outlines the experimental setup, Key Performance
Indicators (KPIs), comparative results of various Al models,
and an in-depth discussion of the findings. The aim is to
validate the improvements AI brings to SDN in terms of
network efficiency, decision-making accuracy, and resource
optimization.
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A. Experimental Setup

The experimental framework used to assess Al-based
SDN performance is based on Mininet, an emulation
platform that allows the creation of complex network
topologies. The Ryu controller was selected for its modular

structure and ease of integration with external Al algorithms.

Python-based libraries such as Scikit-learn and TensorFlow
were used to develop the AI models. The test network
consisted of multiple OpenFlow switches, hosts, and links
with varying bandwidths and latencies to simulate real-
world traffic conditions. iPerf and custom traffic generators
were utilized to generate diverse data flows representing
web browsing, video streaming, file transfers, and voice
over IP (VoIP) communications.

B. Performance Metrics

The evaluation focused on the following five critical
metrics:
Traffic Classification Accuracy: The proportion of
correctly identified traffic types, crucial for effective
Quality of Service (QoS) management.
Average End-to-End Delay: Measures the latency
experienced by packets as they travel from source to
destination.
Throughput: Indicates the volume of successfully
transmitted data over the network within a specific
period.
Packet Loss Rate: Represents the percentage of
packets lost during transmission.
Controller Decision Time: The time the controller
takes to process a new flow and update the flow tables

accordingly.

C. Al Models Used

Three supervised machine learning algorithms—Support
Vector Machine (SVM), Naive Bayes (NB), and Nearest
Centroid—were trained on a dataset comprising flow-level
features such as packet size, inter-arrival time, and protocol
type. An Artificial Neural Network (ANN) model was also
developed to perform path selection based on real-time
network statistics, including link utilization and current
traffic load.

D. Results and Observations

The integration of Al into the SDN environment led to
marked improvements across all evaluated metrics. Table 1
below presents the summarized results:

Table 1. Comparative analysis of different Al models

Classification Ave Throughput Packet Controller
Model Accurac; Delay (Mbps) Loss Time (ms)
Y my il (%)
SVM 92.3% 21.6 74.2 1.3% 9.5
Naive 96.79% 18.9 76.8 0.9% 8.2
Bayes
Nearest o o
Centroid 91.02% 24.5 71.3 1.7% 114
Traditional o
SDN N/A 32.8 65.4 3.1% 15.7

Four comparative bar charts were created to visually
represent the improvements achieved by integrating Al into
SDN systems. These charts highlight how Al models
outperform traditional SDN setups in terms of classification
accuracy, delay, throughput, and packet loss, see Fig. 9.
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Fig. 9. Performance analysis of different learning models.
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E. Detailed Discussion

Accuracy and Traffic Awareness: One of the standout
advantages of incorporating Al into SDN is the significantly
enhanced traffic classification accuracy. Naive Bayes, with
nearly 97% accuracy, demonstrates that even relatively
simple models can yield substantial benefits when trained
on well-curated data. Accurate traffic classification is
essential in allocating resources effectively, prioritizing
critical traffic, and implementing policy-based routing.

Latency Optimization: Average end-to-end delay saw a
remarkable reduction across all AI models. Traditional SDN
systems often rely on static rule sets or simplistic heuristics
for routing decisions, which are not responsive to real-time
network changes. In contrast, Al-enabled controllers adapt
dynamically by analyzing live traffic patterns and selecting
optimal paths, thereby reducing queuing and propagation
delays.

Throughput Efficiency: Enhanced throughput in Al-
integrated SDN environments indicates better utilization of
network links. AI algorithms avoid congested paths and
reroute flows proactively, leading to increased data
transmission rates. Naive Bayes and SVM models both
achieved throughput gains exceeding 10 Mbps over
traditional SDN configurations, which is significant in high-
load environments.

Packet Loss Reduction: Lower packet loss rates indicate
more stable and reliable network performance. With Al
models effectively predicting and mitigating congestion, the
chances of buffer overflow or dropped packets diminish
substantially. This is particularly beneficial for applications
like video streaming and VolP, where data loss can severely
affect quality.

Controller Processing Time: The time taken by the
SDN controller to process flows and install rules also
decreased due to intelligent decision-making. Al models
reduce the need for iterative decision processes by
predicting the best paths and rules from learned data. This
boosts the controller’s scalability and responsiveness,
especially in large-scale networks.

VII. CONCLUSIONS

The results strongly suggest that incorporating Al into
SDN can dramatically enhance the intelligence and
efficiency of network management. Such systems are not
only capable of self-optimization but also offer improved
resilience against network failures or attacks through
predictive analytics. Future research should explore the
integration of deep learning models and reinforcement
learning techniques for even more sophisticated decision-
making capabilities. Moreover, real-time retraining and
online learning approaches can help Al models adapt to
evolving network behaviors. The potential of combining Al-
driven SDN with network slicing, intent-based networking,
and edge computing also opens new avenues for further
enhancement. In summary, this performance analysis
validates the hypothesis that Al significantly boosts the
operational metrics of SDN. The synergy between Al’s
learning capabilities and SDN’s programmable architecture
paves the way for the next generation of autonomous,
intelligent, and self-healing networks.
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