



Abstract—Wireless sensor networks (WSN) have become a

mainstream technology for environmental monitoring and

observing various variables of interest over extended periods of

time via large-scale networks of sensors. WSNs have a wide

range of applications including wildfire detection, healthcare,

military, and habitat monitoring. In all such application areas,

gathering and then relaying captured data to a central unit is

often considered the primary task of the network. Scientific

analysis however often requires WSNs to capture and store

variables for long periods of time. Storing and managing flows

of data tend to be challenging issues because WSNs often consist

of nodes with limited processing, memory, and power resources.

Therefore the software layer in WSNs needs to implement an

efficient data storage allocation mechanism in order to provide

sufficient memory space for multiple applications. In this paper

we propose a novel statistical approach for estimating

applications storage requirements. Our proposed mechanism

has been originally developed and implemented in a new WSN

middleware called Sensomax, which is an agent-based

decentralized middleware with multiple concurrent

applications support for dynamic data gathering in WSNs. The

mechanism described here proved to be an effective technique

for proactively allocating memory to multiple applications with

different operational paradigms.

Index Terms—Storage, WSN, probability, distribution,

concurrency.

I. INTRODUCTION

Devising storage allocation mechanisms has always been a

challenging task for application developers for both

conventional systems such as PCs, and for a wide range of

embedded devices including wireless sensor networks

(WSNs). The most challenging issue often comes in

allocating appropriate storage space to different applications

based on their current requirement and on how their storage

requirement may change over time. In conventional systems

such issues are not as problematic as in the embedded world,

mainly because in conventional systems storage-space is

usually not scarce; on the other hand, embedded devices such

as WSNs suffer from extreme scarcity of hardware resources

most notably their limited memory and energy resources.

This issue of limited resources in WSNs is one of the primary

factors that influences programming and deployment of these

devices. WSN applications often fall into one of two main

categories: either real-time online monitoring, or long-time

Manuscript received March 25, 2013; revised May 19, 2013.

Mo Haghighi is with the Department of Computer Science, University of

Bristol, Bristol, BS8 1UB, UK and Large-Scale Complex IT Systems

(LSCITS) (e-mail: Mo.Haghighi@bristol.ac.uk).

offline observation. In the latter case, the network is required

to observe variables of interest over an extended period of

time, storing the captured data for subsequent relaying to a

central unit. The captured data may be stored in a raw (or

lossless-compressed) form or in some internally-aggregated

form such as lossy-compressed or summary statistics. This

requires WSN nodes to not only provide reasonable energy

longevity for the application, but also to provide enough

storage to retain sufficient data for the lifetime of the

application. Recent research on WSNs has mostly focused on

conserving energy to increase the life of WSNs, yet lack of

sufficient storage could make the network as non-operational

as a lack of energy does. WSN applications are usually

required to operate unattended and in many cases need to be

deployed in hostile environments or places where access to

nodes is severely constrained, or impossible. Therefore

efficient mechanisms with a fair extent of autonomy are a key

requirement for WSNs’ operating systems or middleware.

Conventional WSNs often consist of tightly coupled

hardware and software whereby very application-specific

services are coded into the entire software stack running on

each node. With recent advances in microelectronics and

embedded systems design however, new WSN devices have

been manufactured that can offer richer hardware resources

and hence pave the way for dynamic general-purpose

software to be accommodated in such devices.

Middleware is a software layer that lies between the

application layer and hardware resources, managing

communication, processing, storage and resource allocation

amongst hardware resources and applications. Running an

autonomous middleware such as Sensomax [1], [2], often

requires resources that are capable of multi-tasking and

running algorithms for aggregation and decision-making.

Probably the most widely used hardware resources in WSN

research are the Mica family [3] such as the Micaz and Mica2

motes that are very often used with TinyOS [4], which is an

operating system originally developed for Mica nodes. When

it comes to memory and processor, Mica motes are extremely

resource constrained. For example, the Mica2 hardware

includes an Atmel processor operating at 16MHz and its

memory includes 4Kb of RAM and 128Kb of flash storage.

With such scarce resources, the tasks of developing

autonomous software and storing large volume of data are

very constrained. New devices such as the SunSpot [5]

however provide a resource rich platform in a high-level

development environment such as Java. SunSpot devices

include a 400MHz ARM processor, 1Mb of RAM and 8Mb

of data storage. The hardware features of SunSpot and the

programming power of Java motivated us to design and

Dynamic Data Storage Estimation for Multiple Concurrent

Applications Using Probability Distribution Modeling in

WSNs

Mo Haghighi

Journal of Advances in Computer Network, Vol. 1, No. 3, September 2013

254DOI: 10.7763/JACN.2013.V1.51

implement a novel dynamic middleware called Sensomax

which runs on SunSpot nodes and also on Raspberry Pi

single-board computers [6]. Sensomax incorporates a number

of conventional systems’ capabilities such as serving

concurrent multiple applications, agent-based

communication, dynamic runtime reconfiguration and

decentralized execution of multiple operational paradigms.

The detailed architecture of Sensomax has been described in

previous publications [1] and [2], and is intended for future

open-source release, but for completeness we provide a brief

description of its high-level component interactions in the

remainder of this section.

Sensomax hosts multiple applications concurrently and

this feature requires many careful considerations in terms of

fair allocation of resources amongst applications while

maintaining a reasonable lifetime and meeting each

application’s performance requirements. This requires a

number of trade-offs amongst different aspects of the

network, which necessitate a number of autonomous

decision-making processes at both node and network levels.

Sensomax exploits autonomous controllers in several areas

including the storage allocation and inter-cluster distributed

processing. For the purpose of this paper, we focus on how

Sensomax implements autonomous storage management and

allocation, both globally and locally, to meet multiple

application demands for different operational paradigms.

In WSNs, data storage can be categorized into two major

sub-categories of Local Storage and Collaborative Storage

[7]. In the former, data are stored into the sensing node; and

in the latter, sensed data get relayed to other nodes for further

processing or storage, such as the cluster-head or the base

station. However, [8] as one of the earliest research attempts

at WSN storage, proposes a context-aware storage

mechanism using Geographical Hash Table (GHT) and

categorises data storage into three fields of Local Storage

(LS), External Storage (ES) and Data Centric Storage (DCS),

in which, LS represents the same definition as the local

storage in [7], ES and DCS on the other hand, can be

described as sub-categories of collaborative storage. In ES,

data get transferred to a central sink node without prior

aggregation, whereas in DCS, data get relayed to a node with

close proximity to the captured event. Several other

researchers in WSN storage have tried to enhance the DCS

with new techniques in order to improve the energy

consumption model and data-gathering, such as [9].

Scientific applications often require data gathering on

specific variables over extended periods of time in order to

generate large datasets, sufficient for deriving reliable

statistics. Therefore WSN middleware needs to provide a fair

amount of storage capacity. When dealing with a single

application, this issue can be much simpler as the entire

storage becomes available to the application. The issue in that

case is how to distribute data amongst nodes in order to take

full advantage of storage available in all nodes. That often

requires capturing data by one node and then relaying the

data to other nodes for storage. However in Sensomax we are

dealing with multiple applications running on a single node

or on a cluster of nodes. This imposes a new challenge: how

to allocate storage locally to multiple applications as well as

distributing storage globally amongst other clusters and

nodes. While many techniques have been proposed to deal

with storage of a single WSN application, handling multiple

concurrent applications requirements is something that has

been overlooked in the WSN research literature.

Handling multiple concurrent applications often requires

the middleware to have full knowledge of the amount of

storage needed by each application. In principle, such issues

can be solved by dividing the available storage fairly amongst

all, However, WSN applications in dynamic environments

have the tendency of changing their requirements due to

changes in the external environment that is being

sensed/monitored, alterations in application demands, or as a

result of analysing the captured data. Dynamic applications

constantly change their requirements and the middleware

should be capable of dealing with those changes and actively

reassessing the allocations. We believe applications should

be able not only to actively reconfigure the network but also

to implement the reconfigurations proactively in order to

predict the application demands ahead of time. Such

strategies require a great deal of autonomy and subsequently

increase the amount of processing which leads to a shorter

WSN lifetime. Therefore they should be implemented

considering all aspects of the WSNs as well as taking the

application requirements into account without imposing huge

resource overheads.

In this document we propose a mechanism that gradually

adapts to application storage demands and proactively

allocates the available storage in an efficient manner. This

mechanism requires the applications to run for a short while

before training their captured data as a sample using

statistical analysis. We propose a mechanism that here is

described in terms of using standard statistical probability

distributions such as the binomial, Poisson and Gaussian

distributions which can readily be extended to other

distributions. Our model uses these probabilistic techniques

to predict how much storage is needed for each application

and constantly reassess its strategy as more data become

available. Based on our experiments, the more data are

captured by the node, the more accurate the probabilistic

models become. Each probabilistic model is represented by

an algorithm, which is integrated in a standalone component

and is executed by the middleware. It is worth noting that this

process does not micro-model the data but it focuses on the

frequency of event occurrences and how the overall patterns

of data change over time. In the next section we will look at

some of the prior literature on statistical analysis in WSNs as

well as existing WSN storage techniques

II. ARCHITECTURE

Our proposed Sensomax storage protocol works in a

step-by-step allocation fashion, whereby, on the node level,

each node’s available storage space is assessed multiple

times during its lifetime. Every assessment may increase or

decrease the node’s storage based on the number of

applications running on the node and their runtime

requirement changes. On the application level, every

application’s available storage is also subject to change,

based on the total allocated storage to the current running

applications and number of new concurrent applications to be

added to the node. The main objectives of our proposed

architecture can be summarized as follows:

Journal of Advances in Computer Network, Vol. 1, No. 3, September 2013

255

1) Decentralized data storage estimation for each

application locally by each node.(Local Storage)

2) Exploiting popular statistical data analysis that are easy

to implement using Java and do not impose high

footprint on resources.

3) Facilitating more efficient data storage estimation for

cluster-heads by breaking down the job among the

members. (Cooperative Storage)

4) Revalidating the allocated storage periodically to meet

the application demands dynamically.

As we explained earlier, Sensomax can host multiple

applications hence the logical choice for allocating storage

space to each application can be initially implemented simply

as the equal division of the available storage. Such a simple

equation could only work if the node receives all applications

at the same time, if all applications have equal storage

requirements, and if the requirements remain constant over

time. However, such a scenario only applies to highly

customized and application-specific WSNs with a fixed

number of applications, that seem unsuitable and highly

inefficient for modern WSN applications and next-generation

WSN node hardware. Hence, we are dealing with multiple

concurrent applications that are added, removed and

modified dynamically at runtime on node, cluster and

network levels. This necessitates a dynamic allocating

process that satisfies all these characteristics whilst managing

storage efficiently.

A number of methods, including those mentioned in the

previous section, were considered and we have synthesised

their best practices, combined and extended them, into a

uniform mechanism in Sensomax that overcomes several

memory allocation complexities. In order to dynamically

modify the storage allocations, applications’ storage

requirements not only need to be calculated actively but also

proactively. By this we mean that the middleware needs to

respond to their storage demands not only when more storage

is required but also be able to predict their required storage

ahead of time. Such predictions can be achieved through

appropriate probabilistic modelling.

To clarify our reasoning for developing probabilistic

models of future resource needs and demands, further

explanation of the problem needs to be provided here. WSN

applications can be classified into four categories of

Time-driven, Event-driven, Data-Driven and Query-driven.

As we explained earlier, Sensomax handles each application

category exclusively. Therefore applications of each type are

executed in complete isolation and its requirements are also

processed in a context-aware environment. In the same way,

event-driven applications monitor specific variables over a

period of time and only store the values if the event of interest

meets some criteria e.g. typically when the variable exceeds

over/falls below a certain threshold. For this type of

application, there exist some uncertainties concerning when

and how often such events happen. Obviously predicting

exact occurrences of those events is impossible, but this is

where probabilistic modelling techniques can help us to train

event-driven data for a short period in order to estimate the

frequency of event occurrences and hence its required

storage.

In this section we propose prediction mechanisms using

techniques based on discrete and continuous probability

distributions, facilitating the temporal modelling of key

variables in an event-driven manner that run for a finite

period of time.

Fig. 1. Continuous storage estimation every 10% of the previously

allocated storage or time.

In order to initiate these probabilistic models, some

approximate preliminary data about the observed variables

are required, such as how frequently a variable may change

over a certain period of time. These preliminary data may not

be extracted from the application itself unless the application

runs for a short “bootstrap” or “ramp-up” period. Sensomax

consists of a step-by-step technique in which the application

runs for 10% of its total observation period or 10% of its

initial allocated storage space in order to obtain sufficient

data on its behavioural pattern. As Fig. 1 shows, every

incoming event-driven application is assigned with an

arbitrary storage. The amount allocated is for data training

purposes only and purely depends on the remaining storage

and the number of applications running in the node. The

application may start capturing and continues until either it

has filled 10% of its allowed space, or it has run for 10% of its

operational period (for cases that have specific starting and

ending times,) or whichever comes first. After passing its 10%

testing period, the captured data are then input for the

probabilistic modelling. The results from the modelling then

determine an estimated storage space for the remaining

lifetime of the application. This process continues for every

10% of the allocated storage until after a stable storage is

determined.

Fig. 2. Components interactions for data storage

Our proposed middleware follows a components-based

design where each component represents a software module

in charge of a set of homogenous sub-tasks aimed at fulfilling

Journal of Advances in Computer Network, Vol. 1, No. 3, September 2013

256

a higher-level task. Such modulated design helps the

application developers to envision the entire system as a

collection of interactions amongst various modules and in

turn facilitates the development process by interpreting the

application requirements into a set of coordinated

interactions amongst modules.

As Fig. 2 shows, the process of applying multiple

algorithms (from the computation layer) on the captured can

be seamlessly programmed into the system by exploiting the

modules’ functionalities in each layer. Different applications

can access the memory directly while the allocation process

is done inside the storage layer.

In order to use a binomial model, events should be

described in terms of success and failure over a fixed number

of trials. Therefore this distribution is suitable for

event-driven applications. However there requires a number

of trials, whereby Sensomax translates the testing duration as

the number of trials based on the events frequency pattern e.g.

the trial number for two events happening in a second with 3

milliseconds interval is 1000 whereas the trial for two events

happening in 60 seconds with 3 seconds interval is 60.

Assigning the number of trials for binomial distribution, in

the way we have done, could be problematic in terms of

accuracy when dealing with few number of events over a

long period of time or a large number of events over a very

short period of time. Therefore Poisson distribution is used as

the primary data modelling to estimate the storage. One of the

features of Poisson distribution is treating events

independently, which is very much applicable to

event-driven scenarios in WSNs, provided a single variable is

captured by every instance of an application. Existing

Poisson-based approaches in WSNs include: [10] and [11]

approximate traffic flow in multi-sink sensor network via a

Poisson process, [10] estimates the number of events

occurring in the network and the number of corresponding

packets to be generated and sent around the network via a

model based on the Poisson distributions and [12] uses a

Poisson model to determine the optimal number of

cluster-heads in order to reduce the overall energy

consumption of the network.

As Fig. 1 shows, captured data are trained using the

Poisson distribution and then double-checked using the

Binomial distribution. Based on our experiments, when the

probability proved to be higher than 0.575 (57.5%) then the

allocation needs to be applied (This will be shown in the

evaluation section). Basically a number of different

probability values (in percentage) were tested against the

actual storage required (in percentage), and 57.5% proved to

be a reliable confidence threshold. Once the application

receives its allocated storage, it resumes its observation.

After 10% of the allocated storage is used, the middleware

assesses its storage based on the new captured data and its

previous allocation. A new storage allocation is made, which

could be more or less than the previous allocation. This

process continues until a fair number of allocations are done,

in which case the 10% checking interval could rise in order to

reduce the number of assessments and save energy.

Based on our practical experiences, and many experiments,

it is clear that some applications may dynamically change

their observation requirements dramatically. In such cases

the allocated storage will not be enough and the application

will run out of storage very quickly before the next

reassessment period is reached. Based on the aforementioned

nature of event-driven applications, there requires an extra

temporary space for cases where the application requirement

overflows the allocated storage. The standard deviation of

normal distribution is an appropriate measure to be added to

the allocated space. The allocated probability using the

Poisson and Binomial distributions can represent the mean of

the normal distribution and standard deviation derived from

the Gaussian distribution can represent the spread of

probability around the mean value. Therefore we use the

standard deviation to calculate the extra storage to prevent an

application from running out of space. Standard variation is

the square root of variance. In Fig. 1 and in the next section

we have used variance instead of standard deviation just to

conform to the common practice of statistical analysis. In a

similar approach, [13] investigates Poisson- and Gaussian-

distribution models for locating randomly deployed nodes

and estimating the noise ratio, respectively. The

distributional models are used to fuse the total number of

detections based on their estimated locations in the network,

to increase the accuracy of target detection.

III. EVALUATION

We have conducted a number of experiments to prove the

efficiency of using probability distributions for estimating the

applications’ required storage, on both cluster and node

levels, using Sensomax running on a small WSN of 14 Sun

Spot devices as prototypes, and also a bespoke simulator

called SXCS which we wrote as a simulator/emulator

designed for Sensomax.

For the first experiment, a virtual environment with 500

virtual nodes, running lightweight applications, which were

interested in only 2 variables, was simulated for a period of

54 seconds. Each node was set to have 50 events on average,

whilst running 5 concurrent applications. The objective of

this experiment was to find the difference between how much

storage the applications require in practice, and how much

storage is allocated by the middleware.

Fig. 3. Estimated vs. required storage at node level

Fig. 3 shows the average actual storage needed by the

applications (red bars) vs. the estimated storage by

middleware (blue bars). The vertical axis denotes the amount

of node total memory in percentage.

Fig. 4 illustrates the same experiment on the cluster level,

denoting how much collaborative storage inside the

Journal of Advances in Computer Network, Vol. 1, No. 3, September 2013

257

cluster-head is needed by applications running on cluster

members (red bars) vs. how much storage is allocated to them

(blue bars). A quick analysis of the figures shows the

accuracy of estimation increases over time as more data

become available.

Fig. 4. Estimated vs. required storage in cluster-heads

Fig. 5 represents the overall error rate between the actual

and estimated storage requirements in Fig. 3 and Fig. 4. As it

shows, in total, the error rate is less than 15% in nodes and

less than 10% in the cluster-heads. The lower error rate in the

cluster-head is due to wider availability of data from multiple

data sources (cluster members). There are sudden rises at

instances 8 and 18 seconds on node level. These anomalies

correspond to the first and second estimation periods when

the required storage is being calculated. This abnormal

behavior only happens at those periods.

Fig. 5. Total error of node and cluster levels storage estimations

As we mentioned the overall error rate is much less in the

cluster-heads due to availability of more data from multiple

data sources. Therefore cluster density has an impact on the

accuracy. Our next experiment shows how cluster-density

affects accuracy of estimation function.

Fig. 6 shows how estimation accuracy varies based on the

number of nodes in a cluster. The blue line shows the average

estimation accuracy of a cluster-head with 1-38 members in

simulation. The red line, on the other hand, shows the same

experiment on a real WSN built from Sun Spot nodes. Based

on our experiment 60% accuracy is the minimum level

required for real-time applications as the error rates increases

dramatically below this measure. Therefore we only carried

on the experiment for another 20% extra below the minimum,

which represents 32 nodes in simulation. In the case of our

Sun Spot WSN, since we only had 14 nodes available we

couldn’t carry on the experiment for a higher number of

nodes. However in this experiment, a cluster of 11 Sun Spots

hit the minimum and therefore we achieved our objective.

Fig. 6. Cluster density vs. estimation accuracy

As was explained in the previous section, allocations are

only done when the probabilities are higher than the

confidence threshold of 60%. As we explained, this threshold

was selected based on a number of experiments. Fig. 6 shows

the average accuracy of different probability results, both in

simulations (red bars) and on the Sun Spots (blue bars). As

this figure shows, probabilities less than 10% have negative

accuracy, which in this case means allocated storage is way

less than what is needed by the applications.

Fig. 7. Confidence thresholds vs. accuracy

Based on Fig. 7, we achieved our desired 60% accuracy

with probability threshold values of 57.5% (0.575) and over,

running on 14 Sun Spots. In simulation however, we

achieved way less accuracy with 57.5% confidence threshold

resulting in only 20% accuracy with 14 virtual nodes. This is

due to wider distribution of events in the simulation

environment and randomness of sensed variables. Therefore

for the simulation, we based our confidence threshold on

85%. We repeated the first experiment, this time with 500

virtual nodes. (Fig. 3 and Fig. 4). Based on this figure,

increasing the number of nodes improved our results by 50%

on average, which is slightly on par with the Sun Spot

confidence values in Fig. 6. In summary, such anomalies can

be distributed to the way events are scattered in virtual

environments in SXCS simulator.

Journal of Advances in Computer Network, Vol. 1, No. 3, September 2013

258

Fig. 8. Different distributions and their accuracies

Fig. 8 shows the comparison achieved from Poisson (blue

line), Binomial (red line) and Gaussian distribution (green

line). In general Poisson probability distribution proved to

have higher accuracy over time compared to the binomial.

This is worth noting that we only used Gaussian distribution

to calculate the variance, in order to find the deviation of

other two distributions for reserving extra storage.

Finally in our last experiment we repeated a style of

experiment that we first reported in [2], to calculate how

much longer processing an agent takes with the introduction

of estimation functions in our architecture. Fig. 9 shows the

processing time with (brown line) and without (orange line)

estimation function with 30 concurrent applications running

on the Sun Spots. Red and blue lines on the other hand

represent the processing time with and without the estimation

function respectively, while running 100 concurrent

applications in the simulation. Estimation function proved to

have improved Sensomax’s response time to the agents and

application dynamic demands. However, It is worth

mentioning that this is also partially due to the

reconfiguration of our architecture which reduces the number

sequences an agents needs to go through before being fetched

by the storage module. In order to implement the probability

analysis, some of the extra processing for storing and

indexing data was removed. As a result we achieved better

performance using distribution techniques. It also depends on

the nature of the application. For the purpose of this

experiment we have used very lightweight event-driven and

time-driven applications, which in overall has reduced the

amount of processing by 30-45%.

IV. CONCLUSION

In this paper we have shown how WSNs can dynamically

adapt to the different storage requirements of multiple

concurrent applications using different probability

distribution modeling. Binomial, Poisson and Gaussian

probability distributions have been used in a uniform

combination to present a mechanism for estimating the

required storage per application, in both active and proactive

manners. We constructed such a mechanism in Java, and

utilized it as a computational module in Sensomax’s

component-based architecture. This led to lower agent

processing time on the node level, as well as easing the

collaborative storage on the cluster-level. Our future works

will include game theory and market-based techniques for

autonomous storage allocation.

REFERENCES

[1] M. Haghighi and D. Cliff, “Sensomax: An Agent-Based Middleware

For Decentralized Dynamic Data-Gathering in Wireless Sensor
Networks,” in Proc. The 2013 International Conference on

Collaboration Technologies and Systems, CTS 2013, May 2013.

[2] M. Haghighi and D. Cliff, “Multi-Agent Support for Multiple
Concurrent Applications and Dynamic Data-Gathering in Wireless

Sensor Networks,” in Proc. Seventh International Conference on

Innovative Mobile and Internet Services in Ubiquitous Computing,
IMIS-2013, July 2013.

[3] MICA2 Wireless Measurement System Product Information. Crossbow

Technology Inc., Crossbow. [Online]. Available:
http://bullseye.xbow.com:81/Products/Product_pdf_files/Wireless_pd

f/MICA2_Datasheet.pdf

[4] P. Levis and D. Gay, TinyOS Programming, CUP, 2009.
[5] Sun Spot Programmer’s manual, Oracle, Release v6.0, Sun Labs,

Oracle, 2010.

[6] E. Upton and G. Halfacree, Raspberry Pi. USER GUIDE IS, John
Wiley and Sons, 2012.

[7] S. Tilak, N. Abu-Ghazaleh, and W. B. Heinzelman, “Storage

management in wireless sensor networks,” Mobile Wireless and Sensor
Networks: Technology, Applications and Future Directions,

IEEE/Wiley, 2006, pp. 257–281.

[8] S. Ratnasamy, B. Karp, S. Shenker, D. Estrin, R. Govindan, L. Yin, and
F. Yu, “Data-centric storage in sensornets with ght, a geographic hash

table, Mobile Networks and Applications (MONET),” Journal of

Special Issues on Mobility of Systems, Users, Data, and Computing,
2003.

[9] W. Liao and H. Yang, "An energy-efficient data storage scheme in

wireless sensor networks," Network Operations and Management
Symposium (NOMS), 2012 IEEE.

[10] Z. Wang, K. Yang, and D. K. Hunter, “Modelling and analysis of

multi-sink wireless sensor networks using queuing theory,” in Proc. 4th
Conference on Computer Science and Electronic Engineering (CEEC),

Sept. 2012, pp. 169-174.

[11] S. Aldaahmeh and M. Ghogho, “Traffic estimation for MAC protocols

in distributed detection wireless sensor networks,” in Proc. the 20th

European Signal Processing Conference (EUSIPCO), August, 2012,
pp. 719-723.

[12] R. Ranjan and S. Kar, “A novel approach for finding optimal number of

cluster head in wireless sensor network,” in Proc. National Conference
on Communications (NCC), January 2011, pp. 1-5.

[13] R. Niu and P. K Varshney, “Decision fusion in a wireless sensor

network with a random number of sensors,” in Proc. IEEE
International Conference on Acoustics, Speech, and Signal Processing,

March 2005, pp. 861-864.

Mo Haghighi is a doctoral researcher at the
University of Bristol, UK. He is currently pursuing his

research in the area of “Decentralized Agent-based

Adaptive Dynamic Data Gathering in Large-scale
Wireless Sensor Networks”. He has obtained a BEng

in Electronic and Telecommunications engineering

followed by an MSc in Wireless Sensor Networks. He
began his research in a joint collaboration between the

University of Bristol, the BAE Systems and

Large-Scale Complex IT Systems (LSCITS). Prior to
his PhD, he had worked for Sun Microsystems/Oracle for over two years,

primarily involved in academic projects. As a member of LSCITS, his

research has broadened to include complexity science, Cloud computing,
multi-agent systems and quantitative data analysis for large-scale complex

systems. Mo has extensive programming experience in Java, C++ and

Assembly. He also specializes in designing embedded systems (ARM,
Freescale, Microchip and Intel), large-scale distributed systems, network

security, machine learning, LoWPANs and Microwave communications.

Journal of Advances in Computer Network, Vol. 1, No. 3, September 2013

259

