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Abstract—Wireless sensor networks (WSN) have become a 

mainstream technology for environmental monitoring and 

observing various variables of interest over extended periods of 

time via large-scale networks of sensors. WSNs have a wide 

range of applications including wildfire detection, healthcare, 

military, and habitat monitoring. In all such application areas, 

gathering and then relaying captured data to a central unit is 

often considered the primary task of the network. Scientific 

analysis however often requires WSNs to capture and store 

variables for long periods of time. Storing and managing flows 

of data tend to be challenging issues because WSNs often consist 

of nodes with limited processing, memory, and power resources. 

Therefore the software layer in WSNs needs to implement an 

efficient data storage allocation mechanism in order to provide 

sufficient memory space for multiple applications. In this paper 

we propose a novel statistical approach for estimating 

applications storage requirements. Our proposed mechanism 

has been originally developed and implemented in a new WSN 

middleware called Sensomax, which is an agent-based 

decentralized middleware with multiple concurrent 

applications support for dynamic data gathering in WSNs. The 

mechanism described here proved to be an effective technique 

for proactively allocating memory to multiple applications with 

different operational paradigms.  

 
Index Terms—Storage, WSN, probability, distribution, 

concurrency. 

 

I. INTRODUCTION 

Devising storage allocation mechanisms has always been a 

challenging task for application developers for both 

conventional systems such as PCs, and for a wide range of 

embedded devices including wireless sensor networks 

(WSNs). The most challenging issue often comes in 

allocating appropriate storage space to different applications 

based on their current requirement and on how their storage 

requirement may change over time. In conventional systems 

such issues are not as problematic as in the embedded world, 

mainly because in conventional systems storage-space is 

usually not scarce; on the other hand, embedded devices such 

as WSNs suffer from extreme scarcity of hardware resources 

most notably their limited memory and energy resources. 

This issue of limited resources in WSNs is one of the primary 

factors that influences programming and deployment of these 

devices. WSN applications often fall into one of two main 

categories: either real-time online monitoring, or long-time 

 
 
Manuscript received March 25, 2013; revised May 19, 2013. 

Mo Haghighi is with the Department of Computer Science, University of 

Bristol, Bristol, BS8 1UB, UK and Large-Scale Complex IT Systems 

(LSCITS) (e-mail: Mo.Haghighi@bristol.ac.uk). 

offline observation. In the latter case, the network is required 

to observe variables of interest over an extended period of 

time, storing the captured data for subsequent relaying to a 

central unit. The captured data may be stored in a raw (or 

lossless-compressed) form or in some internally-aggregated 

form such as lossy-compressed or summary statistics. This 

requires WSN nodes to not only provide reasonable energy 

longevity for the application, but also to provide enough 

storage to retain sufficient data for the lifetime of the 

application. Recent research on WSNs has mostly focused on 

conserving energy to increase the life of WSNs, yet lack of 

sufficient storage could make the network as non-operational 

as a lack of energy does. WSN applications are usually 

required to operate unattended and in many cases need to be 

deployed in hostile environments or places where access to 

nodes is severely constrained, or impossible. Therefore 

efficient mechanisms with a fair extent of autonomy are a key 

requirement for WSNs’ operating systems or middleware. 

Conventional WSNs often consist of tightly coupled 

hardware and software whereby very application-specific 

services are coded into the entire software stack running on 

each node. With recent advances in microelectronics and 

embedded systems design however, new WSN devices have 

been manufactured that can offer richer hardware resources 

and hence pave the way for dynamic general-purpose 

software to be accommodated in such devices.  

Middleware is a software layer that lies between the 

application layer and hardware resources, managing 

communication, processing, storage and resource allocation 

amongst hardware resources and applications. Running an 

autonomous middleware such as Sensomax [1], [2], often 

requires resources that are capable of multi-tasking and 

running algorithms for aggregation and decision-making. 

Probably the most widely used hardware resources in WSN 

research are the Mica family [3] such as the Micaz and Mica2 

motes that are very often used with TinyOS [4], which is an 

operating system originally developed for Mica nodes. When 

it comes to memory and processor, Mica motes are extremely 

resource constrained. For example, the Mica2 hardware 

includes an Atmel processor operating at 16MHz and its 

memory includes 4Kb of RAM and 128Kb of flash storage.  

With such scarce resources, the tasks of developing 

autonomous software and storing large volume of data are 

very constrained. New devices such as the SunSpot [5] 

however provide a resource rich platform in a high-level 

development environment such as Java. SunSpot devices 

include a 400MHz ARM processor, 1Mb of RAM and 8Mb 

of data storage. The hardware features of SunSpot and the 

programming power of Java motivated us to design and 
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implement a novel dynamic middleware called Sensomax 

which runs on SunSpot nodes and also on Raspberry Pi 

single-board computers [6]. Sensomax incorporates a number 

of conventional systems’ capabilities such as serving 

concurrent multiple applications, agent-based 

communication, dynamic runtime reconfiguration and 

decentralized execution of multiple operational paradigms. 

The detailed architecture of Sensomax has been described in 

previous publications [1] and [2], and is intended for future 

open-source release, but for completeness we provide a brief 

description of its high-level component interactions in the 

remainder of this section.  

Sensomax hosts multiple applications concurrently and 

this feature requires many careful considerations in terms of 

fair allocation of resources amongst applications while 

maintaining a reasonable lifetime and meeting each 

application’s performance requirements. This requires a 

number of trade-offs amongst different aspects of the 

network, which necessitate a number of autonomous 

decision-making processes at both node and network levels. 

Sensomax exploits autonomous controllers in several areas 

including the storage allocation and inter-cluster distributed 

processing. For the purpose of this paper, we focus on how 

Sensomax implements autonomous storage management and 

allocation, both globally and locally, to meet multiple 

application demands for different operational paradigms.  

In WSNs, data storage can be categorized into two major 

sub-categories of Local Storage and Collaborative Storage 

[7]. In the former, data are stored into the sensing node; and 

in the latter, sensed data get relayed to other nodes for further 

processing or storage, such as the cluster-head or the base 

station. However, [8] as one of the earliest research attempts 

at WSN storage, proposes a context-aware storage 

mechanism using Geographical Hash Table (GHT) and 

categorises data storage into three fields of Local Storage 

(LS), External Storage (ES) and Data Centric Storage (DCS), 

in which, LS represents the same definition as the local 

storage in [7], ES and DCS on the other hand, can be 

described as sub-categories of collaborative storage. In ES, 

data get transferred to a central sink node without prior 

aggregation, whereas in DCS, data get relayed to a node with 

close proximity to the captured event. Several other 

researchers in WSN storage have tried to enhance the DCS 

with new techniques in order to improve the energy 

consumption model and data-gathering, such as [9]. 

Scientific applications often require data gathering on 

specific variables over extended periods of time in order to 

generate large datasets, sufficient for deriving reliable 

statistics. Therefore WSN middleware needs to provide a fair 

amount of storage capacity. When dealing with a single 

application, this issue can be much simpler as the entire 

storage becomes available to the application. The issue in that 

case is how to distribute data amongst nodes in order to take 

full advantage of storage available in all nodes. That often 

requires capturing data by one node and then relaying the 

data to other nodes for storage. However in Sensomax we are 

dealing with multiple applications running on a single node 

or on a cluster of nodes. This imposes a new challenge: how 

to allocate storage locally to multiple applications as well as 

distributing storage globally amongst other clusters and 

nodes. While many techniques have been proposed to deal 

with storage of a single WSN application, handling multiple 

concurrent applications requirements is something that has 

been overlooked in the WSN research literature.  

Handling multiple concurrent applications often requires 

the middleware to have full knowledge of the amount of 

storage needed by each application. In principle, such issues 

can be solved by dividing the available storage fairly amongst 

all, However, WSN applications in dynamic environments 

have the tendency of changing their requirements due to 

changes in the external environment that is being 

sensed/monitored, alterations in application demands, or as a 

result of analysing the captured data. Dynamic applications 

constantly change their requirements and the middleware 

should be capable of dealing with those changes and actively 

reassessing the allocations. We believe applications should 

be able not only to actively reconfigure the network but also 

to implement the reconfigurations proactively in order to 

predict the application demands ahead of time. Such 

strategies require a great deal of autonomy and subsequently 

increase the amount of processing which leads to a shorter 

WSN lifetime. Therefore they should be implemented 

considering all aspects of the WSNs as well as taking the 

application requirements into account without imposing huge 

resource overheads. 

In this document we propose a mechanism that gradually 

adapts to application storage demands and proactively 

allocates the available storage in an efficient manner. This 

mechanism requires the applications to run for a short while 

before training their captured data as a sample using 

statistical analysis. We propose a mechanism that here is 

described in terms of using standard statistical probability 

distributions such as the binomial, Poisson and Gaussian 

distributions which can readily be extended to other 

distributions. Our model uses these probabilistic techniques 

to predict how much storage is needed for each application 

and constantly reassess its strategy as more data become 

available. Based on our experiments, the more data are 

captured by the node, the more accurate the probabilistic 

models become. Each probabilistic model is represented by 

an algorithm, which is integrated in a standalone component 

and is executed by the middleware. It is worth noting that this 

process does not micro-model the data but it focuses on the 

frequency of event occurrences and how the overall patterns 

of data change over time. In the next section we will look at 

some of the prior literature on statistical analysis in WSNs as 

well as existing WSN storage techniques  

 

II. ARCHITECTURE 

Our proposed Sensomax storage protocol works in a 

step-by-step allocation fashion, whereby, on the node level, 

each node’s available storage space is assessed multiple 

times during its lifetime. Every assessment may increase or 

decrease the node’s storage based on the number of 

applications running on the node and their runtime 

requirement changes. On the application level, every 

application’s available storage is also subject to change, 

based on the total allocated storage to the current running 

applications and number of new concurrent applications to be 

added to the node. The main objectives of our proposed 

architecture can be summarized as follows: 
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1) Decentralized data storage estimation for each 

application locally by each node.(Local Storage) 

2) Exploiting popular statistical data analysis that are easy 

to implement using Java and do not impose high 

footprint on resources. 

3) Facilitating more efficient data storage estimation for 

cluster-heads by breaking down the job among the 

members. (Cooperative Storage) 

4) Revalidating the allocated storage periodically to meet 

the application demands dynamically. 

As we explained earlier, Sensomax can host multiple 

applications hence the logical choice for allocating storage 

space to each application can be initially implemented simply 

as the equal division of the available storage. Such a simple 

equation could only work if the node receives all applications 

at the same time, if all applications have equal storage 

requirements, and if the requirements remain constant over 

time. However, such a scenario only applies to highly 

customized and application-specific WSNs with a fixed 

number of applications, that seem unsuitable and highly 

inefficient for modern WSN applications and next-generation 

WSN node hardware. Hence, we are dealing with multiple 

concurrent applications that are added, removed and 

modified dynamically at runtime on node, cluster and 

network levels. This necessitates a dynamic allocating 

process that satisfies all these characteristics whilst managing 

storage efficiently. 

A number of methods, including those mentioned in the 

previous section, were considered and we have synthesised 

their best practices, combined and extended them, into a 

uniform mechanism in Sensomax that overcomes several 

memory allocation complexities. In order to dynamically 

modify the storage allocations, applications’ storage 

requirements not only need to be calculated actively but also 

proactively. By this we mean that the middleware needs to 

respond to their storage demands not only when more storage 

is required but also be able to predict their required storage 

ahead of time.  Such predictions can be achieved through 

appropriate probabilistic modelling.  

To clarify our reasoning for developing probabilistic 

models of future resource needs and demands, further 

explanation of the problem needs to be provided here. WSN 

applications can be classified into four categories of 

Time-driven, Event-driven, Data-Driven and Query-driven. 

As we explained earlier, Sensomax handles each application 

category exclusively. Therefore applications of each type are 

executed in complete isolation and its requirements are also 

processed in a context-aware environment. In the same way, 

event-driven applications monitor specific variables over a 

period of time and only store the values if the event of interest 

meets some criteria e.g. typically when the variable exceeds 

over/falls below a certain threshold. For this type of 

application, there exist some uncertainties concerning when 

and how often such events happen. Obviously predicting 

exact occurrences of those events is impossible, but this is 

where probabilistic modelling techniques can help us to train 

event-driven data for a short period in order to estimate the 

frequency of event occurrences and hence its required 

storage. 

In this section we propose prediction mechanisms using 

techniques based on discrete and continuous probability 

distributions, facilitating the temporal modelling of key 

variables in an event-driven manner that run for a finite 

period of time. 

  

 
Fig. 1. Continuous storage estimation every 10% of the previously 

allocated storage or time. 

 

In order to initiate these probabilistic models, some 

approximate preliminary data about the observed variables 

are required, such as how frequently a variable may change 

over a certain period of time. These preliminary data may not 

be extracted from the application itself unless the application 

runs for a short “bootstrap” or “ramp-up” period. Sensomax 

consists of a step-by-step technique in which the application 

runs for 10% of its total observation period or 10% of its 

initial allocated storage space in order to obtain sufficient 

data on its behavioural pattern. As Fig. 1 shows, every 

incoming event-driven application is assigned with an 

arbitrary storage. The amount allocated is for data training 

purposes only and purely depends on the remaining storage 

and the number of applications running in the node. The 

application may start capturing and continues until either it 

has filled 10% of its allowed space, or it has run for 10% of its 

operational period (for cases that have specific starting and 

ending times,) or whichever comes first. After passing its 10% 

testing period, the captured data are then input for the 

probabilistic modelling. The results from the modelling then 

determine an estimated storage space for the remaining 

lifetime of the application. This process continues for every 

10% of the allocated storage until after a stable storage is 

determined.  

 
Fig. 2. Components interactions for data storage 

Our proposed middleware follows a components-based 

design where each component represents a software module 

in charge of a set of homogenous sub-tasks aimed at fulfilling 
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a higher-level task. Such modulated design helps the 

application developers to envision the entire system as a 

collection of interactions amongst various modules and in 

turn facilitates the development process by interpreting the 

application requirements into a set of coordinated 

interactions amongst modules. 

As Fig. 2 shows, the process of applying multiple 

algorithms (from the computation layer) on the captured can 

be seamlessly programmed into the system by exploiting the 

modules’ functionalities in each layer. Different applications 

can access the memory directly while the allocation process 

is done inside the storage layer. 

In order to use a binomial model, events should be 

described in terms of success and failure over a fixed number 

of trials. Therefore this distribution is suitable for 

event-driven applications. However there requires a number 

of trials, whereby Sensomax translates the testing duration as 

the number of trials based on the events frequency pattern e.g. 

the trial number for two events happening in a second with 3 

milliseconds interval is 1000 whereas the trial for two events 

happening in 60 seconds with 3 seconds interval is 60.   

Assigning the number of trials for binomial distribution, in 

the way we have done, could be problematic in terms of 

accuracy when dealing with few number of events over a 

long period of time or a large number of events over a very 

short period of time. Therefore Poisson distribution is used as 

the primary data modelling to estimate the storage. One of the 

features of Poisson distribution is treating events 

independently, which is very much applicable to 

event-driven scenarios in WSNs, provided a single variable is 

captured by every instance of an application. Existing 

Poisson-based approaches in WSNs include: [10] and [11] 

approximate traffic flow in multi-sink sensor network via a 

Poisson process, [10] estimates the number of events 

occurring in the network and the number of corresponding 

packets to be generated and sent around the network via a 

model based on the Poisson distributions and [12] uses a 

Poisson model to determine the optimal number of 

cluster-heads in order to reduce the overall energy 

consumption of the network. 

As Fig. 1 shows, captured data are trained using the 

Poisson distribution and then double-checked using the 

Binomial distribution. Based on our experiments, when the 

probability proved to be higher than 0.575 (57.5%) then the 

allocation needs to be applied (This will be shown in the 

evaluation section). Basically a number of different 

probability values (in percentage) were tested against the 

actual storage required (in percentage), and 57.5% proved to 

be a reliable confidence threshold. Once the application 

receives its allocated storage, it resumes its observation. 

After 10% of the allocated storage is used, the middleware 

assesses its storage based on the new captured data and its 

previous allocation. A new storage allocation is made, which 

could be more or less than the previous allocation. This 

process continues until a fair number of allocations are done, 

in which case the 10% checking interval could rise in order to 

reduce the number of assessments and save energy. 

Based on our practical experiences, and many experiments, 

it is clear that some applications may dynamically change 

their observation requirements dramatically. In such cases 

the allocated storage will not be enough and the application 

will run out of storage very quickly before the next 

reassessment period is reached. Based on the aforementioned 

nature of event-driven applications, there requires an extra 

temporary space for cases where the application requirement 

overflows the allocated storage. The standard deviation of 

normal distribution is an appropriate measure to be added to 

the allocated space. The allocated probability using the 

Poisson and Binomial distributions can represent the mean of 

the normal distribution and standard deviation derived from 

the Gaussian distribution can represent the spread of 

probability around the mean value. Therefore we use the 

standard deviation to calculate the extra storage to prevent an 

application from running out of space. Standard variation is 

the square root of variance. In Fig. 1 and in the next section 

we have used variance instead of standard deviation just to 

conform to the common practice of statistical analysis. In a 

similar approach, [13] investigates Poisson- and Gaussian- 

distribution models for locating randomly deployed nodes 

and estimating the noise ratio, respectively. The 

distributional models are used to fuse the total number of 

detections based on their estimated locations in the network, 

to increase the accuracy of target detection. 

 

III. EVALUATION 

We have conducted a number of experiments to prove the 

efficiency of using probability distributions for estimating the 

applications’ required storage, on both cluster and node 

levels, using Sensomax running on a small WSN of 14 Sun 

Spot devices as prototypes, and also a bespoke simulator 

called SXCS which we wrote as a simulator/emulator 

designed for Sensomax.  

For the first experiment, a virtual environment with 500 

virtual nodes, running lightweight applications, which were 

interested in only 2 variables, was simulated for a period of 

54 seconds. Each node was set to have 50 events on average, 

whilst running 5 concurrent applications. The objective of 

this experiment was to find the difference between how much 

storage the applications require in practice, and how much 

storage is allocated by the middleware.  

 

 
Fig. 3. Estimated vs. required storage at node level 

 

Fig. 3 shows the average actual storage needed by the 

applications (red bars) vs. the estimated storage by 

middleware (blue bars). The vertical axis denotes the amount 

of node total memory in percentage. 

Fig. 4 illustrates the same experiment on the cluster level, 

denoting how much collaborative storage inside the 
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cluster-head is needed by applications running on cluster 

members (red bars) vs. how much storage is allocated to them 

(blue bars).  A quick analysis of the figures shows the 

accuracy of estimation increases over time as more data 

become available. 

 

 
Fig. 4. Estimated vs. required storage in cluster-heads 

 

Fig. 5 represents the overall error rate between the actual 

and estimated storage requirements in Fig. 3 and Fig. 4. As it 

shows, in total, the error rate is less than 15% in nodes and 

less than 10% in the cluster-heads. The lower error rate in the 

cluster-head is due to wider availability of data from multiple 

data sources (cluster members). There are sudden rises at 

instances 8 and 18 seconds on node level. These anomalies 

correspond to the first and second estimation periods when 

the required storage is being calculated. This abnormal 

behavior only happens at those periods. 

 

 
Fig. 5. Total error of node and cluster levels storage estimations 

 

As we mentioned the overall error rate is much less in the 

cluster-heads due to availability of more data from multiple 

data sources. Therefore cluster density has an impact on the 

accuracy. Our next experiment shows how cluster-density 

affects accuracy of estimation function.  

Fig. 6 shows how estimation accuracy varies based on the 

number of nodes in a cluster. The blue line shows the average 

estimation accuracy of a cluster-head with 1-38 members in 

simulation. The red line, on the other hand, shows the same 

experiment on a real WSN built from Sun Spot nodes. Based 

on our experiment 60% accuracy is the minimum level 

required for real-time applications as the error rates increases 

dramatically below this measure. Therefore we only carried 

on the experiment for another 20% extra below the minimum, 

which represents 32 nodes in simulation. In the case of our 

Sun Spot WSN, since we only had 14 nodes available we 

couldn’t carry on the experiment for a higher number of 

nodes. However in this experiment, a cluster of 11 Sun Spots 

hit the minimum and therefore we achieved our objective. 

 

 
Fig. 6. Cluster density vs. estimation accuracy 

 

As was explained in the previous section, allocations are 

only done when the probabilities are higher than the 

confidence threshold of 60%. As we explained, this threshold 

was selected based on a number of experiments. Fig. 6 shows 

the average accuracy of different probability results, both in 

simulations (red bars) and on the Sun Spots (blue bars).  As 

this figure shows, probabilities less than 10% have negative 

accuracy, which in this case means allocated storage is way 

less than what is needed by the applications.  

 

 
Fig. 7. Confidence thresholds vs. accuracy 

 

Based on Fig. 7, we achieved our desired 60% accuracy 

with probability threshold values of 57.5% (0.575) and over, 

running on 14 Sun Spots. In simulation however, we 

achieved way less accuracy with 57.5% confidence threshold 

resulting in only 20% accuracy with 14 virtual nodes. This is 

due to wider distribution of events in the simulation 

environment and randomness of sensed variables. Therefore 

for the simulation, we based our confidence threshold on 

85%. We repeated the first experiment, this time with 500 

virtual nodes. (Fig. 3 and Fig. 4). Based on this figure, 

increasing the number of nodes improved our results by 50% 

on average, which is slightly on par with the Sun Spot 

confidence values in Fig. 6. In summary, such anomalies can 

be distributed to the way events are scattered in virtual 

environments in SXCS simulator. 
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Fig. 8. Different distributions and their accuracies 

 

Fig. 8 shows the comparison achieved from Poisson (blue 

line), Binomial (red line) and Gaussian distribution (green 

line). In general Poisson probability distribution proved to 

have higher accuracy over time compared to the binomial.  

This is worth noting that we only used Gaussian distribution 

to calculate the variance, in order to find the deviation of 

other two distributions for reserving extra storage.  

Finally in our last experiment we repeated a style of 

experiment that we first reported in [2], to calculate how 

much longer processing an agent takes with the introduction 

of estimation functions in our architecture. Fig. 9 shows the 

processing time with (brown line) and without (orange line) 

estimation function with 30 concurrent applications running 

on the Sun Spots. Red and blue lines on the other hand 

represent the processing time with and without the estimation 

function respectively, while running 100 concurrent 

applications in the simulation. Estimation function proved to 

have improved Sensomax’s response time to the agents and 

application dynamic demands. However, It is worth 

mentioning that this is also partially due to the 

reconfiguration of our architecture which reduces the number 

sequences an agents needs to go through before being fetched 

by the storage module. In order to implement the probability 

analysis, some of the extra processing for storing and 

indexing data was removed. As a result we achieved better 

performance using distribution techniques. It also depends on 

the nature of the application. For the purpose of this 

experiment we have used very lightweight event-driven and 

time-driven applications, which in overall has reduced the 

amount of processing by 30-45%. 

 

IV. CONCLUSION 

In this paper we have shown how WSNs can dynamically 

adapt to the different storage requirements of multiple 

concurrent applications using different probability 

distribution modeling. Binomial, Poisson and Gaussian 

probability distributions have been used in a uniform 

combination to present a mechanism for estimating the 

required storage per application, in both active and proactive 

manners. We constructed such a mechanism in Java, and 

utilized it as a computational module in Sensomax’s 

component-based architecture. This led to lower agent 

processing time on the node level, as well as easing the 

collaborative storage on the cluster-level. Our future works 

will include game theory and market-based techniques for 

autonomous storage allocation. 
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