



Abstract—This paper aims to introduce IPSec protocol,

including its architecture, protocols family and implementations.

We propose a performance evaluation setup which allows IPSec

implementers to evaluate their IPSec implementation. IPSec as it

is known as a set of protocols that work together, with utilizing

multiple components in the IPSec architecture to serve one

purpose, which is securing the internet Protocol (IP) packets.

Security services provided by IPSec in general include:

confidentiality, integrity check and authenticity of the data.

Since measuring the performance can vary and this variation

would end up in inconsistent measuring. This paper represents a

good methodology to test IPSec performance and introduces a

powerful IPSec architecture that utilizes multi-tunnels.

Index Terms—IPSec, StrongSwan, IKE, styling, insert.

I. INTRODUCTION

In Internet Protocol Security (IPSec), users can

communicate through public networks such as internet with

having their connection secure. This secure IPSec tunnel can

be built between host-to-host or between site-to-site, that

tunnel is a one kind of Virtual Private Networks (VPN) as the

name suggests, Virtual because it is a tunnel that has been

constructed by using multiple hops along a public network

such as internet; it is Private since encryption has been used

which transfers that data from being public data into private

data even though it is transferred through a public medium;

and well, it is Networks because it is working as a topology of

interconnected computers that may constitute a huge

networks or network of networks. Not only IPSec, but many

other protocols can build a VPN. Widely accepted and widely

used protocols such as Secure Sockets Layer (SSL), Transport

Layer Security (TLS) and Secure Shell (SSH). Big difference

between these protocols and between IPSec, is that IPSec

operates at the third layer at TCP/IP stack which known as

Network Layer whereas the other protocols operates at the

fourth and the fifth layer Transport Layer and Applications

Layer in the TCP/IP stack. The paper is organized as follows:

first, we talk about the standard IPSec architecture in Section

II. In Section III, we talk about the IPSec implementation. In

Section IV, we show the authentication header. Strong Swan

is illustrated in Section V. In Section VI, a performance

evaluation is shown. Related work is presented in Section VII.

IPSec multi-tunnels architecture is depicted in Section VIII.

Finally, we talk about the conclusions and the future work in

Section IX.

Manuscript received January 23, 2014; revised April 24, 2014. This work

was supported in part by King Saud University, Department of Computer

Science, Saudi Arabia.

The authors are with the Department of Computer Science, King Saud

University, Saudi Arabia (e-mail: cs_saheel@hotmail.com,

ahalmogren@ksu.edu.sa).

II. IPSEC ARCHITECTURE

Speaking of IPSec architecture involves listing all of the

components that contained in IPSec specification. As IETF

has provided 12 RFC documents for IPSec protocol, there is

RFC4301 specifies IPSec architecture. Fig. 1 illustrates the

major components that need to be implemented by IPSec

implementations.

Fig. 1. IPSec standard architecture.

The Security Policy Payload database (SPD): responsible

of policies storing, every IP packet need to be compared

against the policy and finally it responsible of specifying what

action need to be applied on each packet.

The Security Association Database (SAD): responsible of

storing algorithms, it has a link with the policy and usually this

happens by operating system defined interface such as XFRM

interface in Linux systems; if the action specified by the

policy was to deal with the packet as IPSec packet then SAD

will be responsible of specifying how to deal with the packet.

Internet Key Exchange (IKE) component is responsible for

the automatic keying. Since IPSec can operate either with

manual or automatic keying; this component is also

responsible for generating the security associations SA by

utilizing IKE protocol between two parties known as Initiator

and Responder.

SA generated by IKE component has specified the key,

encryption algorithm, hashing algorithm, and the other party

information such as IP address and port number. Before IKE

takes place, ISAKMP (Internet security Association for key

and management protocol) will be used to initiate an

authenticated channel that used by IKE afterward, unlike

ISAKMP the IKE protocol use encryption to preserve data

confidentiality. IKE is not limited to IPSec protocol, it can be

used with any other protocol if the protocol parameters have

been specified, for IPSec there is IPSec domain of

interpretation document, this document should be considered

at IKE implementation to specify what parameters need to be

negotiated by IPSec protocol.

After establishing IKE tunnel IPSec should take place, the

required parameters for using IPSec will comes from IKE,

such as keys and other parameters. Key exchange methods

such as Diffie Hellman will be initialized by IKE protocol to

be used by IPSec protocol. Last component which is IPSec

A Powerful IPSec Multi-Tunnels Architecture

Abdulellah A. Alsaheel and Ahmad S. Almogren

Journal of Advances in Computer Networks, Vol. 2, No. 4, December 2014

274DOI: 10.7763/JACN.2014.V2.125

base protocol, which is responsible for handling outbound and

inbound IPSec packets, this component takes place in the

TCP/IP stack and usually it has a user interface that used to

control or to monitor the IPSec implementation. IPSec base

protocol component implements two protocols

Authentication header (AH) and Encapsulated Security

Payload (ESP). AH protocol provides data authenticity and

integrity. On the other hand ESP provides data encryption and

authenticity and integrity as optional. Sometimes AH is used

to protect ESP, this approach will offer ultimate data integrity

since AH is unlike of ESP is calculating the Integrity

Checking Value (ICV) with considering the IP header

whereas ESP consider its header and the IP payload only.

III. IPSEC IMPLEMENTATION

IPSec has two forms of implementation. Either it is

implemented in host machine or in a gateway router, each of

which has its own advantages. The host implementation [1]

guarantees end to end protection, implement tunnel and

transport IPSec modes, protection is per flow where each flow

will be protected as specified in the policy. Host

implementation is classified as native or shim. As the native is

natively integrated with the host operating system and it

comes bundled at the TCP/IP stack, where on the other hand

there is shim implementation which is added by IPSec

implementers into the TCP/IP stack between the network

layer and the data link layer, this usually known as Bump In

the Stack (BITS). As the native implementation has numerous

advantages over the shim implementation since it can utilize

network services such as path maximum transfer unit (PMTU),

fragmentation and many other services provided by network

layer. On the other hand shim implementation need add its

own services which mean increasing implementation

complexity and duplication of already implemented services

in the network layer.

For gateway routers implementation they utilize tunneling

mode only since many hosts behind them transferring data to

the remote site. Same as host implementation, router

implementation can be either native implementation means

the IPSec implementation is natively implemented in the

TCP/IP stack of the router. The other type of the router

implementation is Bump In The Wire (BITW) which is

similar to the bump in the stack, BITW is a hardware

implementation that attached to the router interface

responsible for applying IPSec services on the routed packets.

Possible performance improvements for IPSec

implementations is to use hardware approaches to improve

IPSec performance, such as using dedicated chip for

generating keys or random numbers, or to use special

hardware for calculating hash values or to encrypt or decrypt

data.

IV. AUTHENTICATION HEADER

In addition to data authenticity and integrity, AH provides

replay protection. It places its header between IP header and

IP payload. AH uses Hash Message Authentication Code

(HMAC) to enforce its protection. Encapsulated Security

Payload (ESP) protects packets by applying encryption,

authentication and optionally data integrity if a trailer gets

added at the end of the packet, which utilizes HMAC

calculations. Its header gets placed between the IP header and

the IP payload.

V. STRONGSWAN

StrongSwan is one of the most prominent IPSec

implementations, extra credits for StrongSwan over other

IPSec implementation such as OpenSwan, FreeS/Wan and

KAME-Tools. Is that StrongSwan is widely adapted in

different Linux distributions, and it is up to this date receives

new releases. It has many plug-ins and it is well documented.

StrongSwan requires enabling some kernel options which are

[2]:

[CONFIG_XFRM_USER],[CONFIG_NET_KEY],

[CONFIG_INET],[CONFIG_IP_ADVANCED_ROUTER],

[CONFIG_IP_MULTIPLE_TABLES],[CONFIG_INET_A

H], [CONFIG_INET_ESP],[CONFIG_INET_IPCOMP],

[CONFIG_INET_XFRM_MODE_TRANSPORT],

[CONFIG_INET_XFRM_MODE_TUNNEL],

[CONFIG_INET_XFRM_MODE_BEET],

[CONFIG_NETFILTER_XTABLES],

[CONFIG_NETFILTER_XT_MATCH_POLICY].

StrongSwan has a set of tools and libraries that constitute

its architecture, StrongSwan components are listed as follows

[3]:

1) charon: component that implements IKE protocol

keying.

2) libstrongswan: the base component that provide the basic

functions used by the tool.

3) libcharon: provide the main functions for IKE to be used

by charon component.

4) libhydra: provide daemon services for charon tool.

5) dumm: testing framework.

6) ipsec: command line interface that let user control and

monitor IPSec functions.

7) manager: web interface to control and monitor charon by

using libfast.

8) libfast: framework to build web applications, this to

provide web interface that control and monitor

StrongSwan.

9) openac: tool to generate certificates attributes.

10) pki: public key infrastructure tool.

11) scepclient: client that implements SCEP protocol that

check the certificates enrollment.

12) starter: responsible for handling ipsec.conf file and of the

keying process.

13) stroke: command line tool that controls charon through

stroke protocol.

A. IPSec Architecture at StrongSwan

StrongSwan uses Iptables as implementation for Security

Policy Database (SPD). And uses charon for implementing

IKE component. The architecture is separated into two

different levels, user level and kernel level. With having

charon daemon working at the user level to control and

Journal of Advances in Computer Networks, Vol. 2, No. 4, December 2014

275

manage Security Associations (SAs) on the use demand. And

it has the kernel level where NETKEY utilized, which

typically deals with encryption and decryption, re-keying and

SAs. The IPSec architecture is illustrated at Fig. 2.

Fig. 2. StrongSwan architecture.

As the majority of IPSec implementations, StrongSwan

uses virtual interface to deal with IPSec packets, there is no

difference between the virtual interface [4] and the physical

interface except that the virtual interface cannot send data to

the public networks, in Linux systems this usually referred to

as TUN/TAP. For IPSec packets first it needs to be processed

by the virtual interface then it needs to be send back to the

physical interface to be treated as normal IP packet.

VI. STRONG SWAN PERFORMANCE EVALUATION

As we have tested StrongSwan v5.1.1 on Ubuntu linux

distribution. Our network topology is consisted of four

machines two of them act as IPSec gateways for their internal

networks (i.e. site-to-site network), and the other two

machines are acting like client and server with transferring a

file over HTTP and FTP protocols as depicted in Fig. 3.

Fig. 3. Throughput vs. protocols.

That can be said, IPSec traffic which is managed by

StrongSwan comes with nearly the same throughput as the IP

traffic, and this is absolutely very good result.

A. Overall Performance Evaluation

Since IPSec suite has many components and many

protocols, it has to be tested by multiple tests that capable to

evaluate each IPSec component that may lead to performance

improvement or degradation.

Not only that, but find an agreed on methodology for

measuring IPSec performance leads to more precise results

that let users can compare between different vendors, and it

helps the vendors to compare their products against other

products in the market.

Test setup can have different forms, depends on the desired

network topology at the deployment time. But having fixed

criteria is what we are aiming for. One possible test setup for

site to site topology is depicted in Fig. 4.

As you can see Device-Under-Test (DUT), with having IP

traffic generator the generate traffic to be sent to DUT2

through DUT1, where DUT1 will encrypts the traffic and

DUT2 will decrypts it. On the other side there is the traffic

analyzer that checks the sanity of the IPSec packets to see

whether if DUT1 and DUT2 had encrypted and decrypted the

data correctly or not.

Fig. 4. Performance evaluation setup.

A popular criteria which is widely accepted and used is

specified in the Table I [5].

TABLE I: PERFORMANCE EVALUATION CRITERIAS

Criteria Metric

IPSec throughput ESP

(tunnel/transport)

B/Sec

IP throughput TCP/UDP B/Sec

IP + IPSec throughput,

ESP (transport/tunnel)

B/Sec

Policy and Security

Association adding and

removing time

Number of policies and

security associations

added and removed/Sec

IPSec events (e.g. no valid

SA)

Number of handled

events/Sec

SAs rekeying Number of rekeyed

SAs/Sec

VII. RELATED WORKS

As [6] proposed a distributed object-based multiple tunnels

IPSec architecture that utilizing AgentNodes which are

physical machines that report to a console (server), inside of

each AgentNode there is a set of defined objects (C++ objects)

that interacts across different AgentNodes in a distributed

way. Each object represents a TunnelStack which composes

an IPSec tunnel (Inbound and Outbound SAs), each

TunnelStack object has its own virtual IP Address, also

TunnelStack object has full TCP/IP stack that capable of

processing: data link, IP and transport layers. Additionally,

they use AgentController that responsible for organizing the

dispatching process for the sent or received packets across the

TunnelStacks. Their work uses shared buffers (queues)

accessible from the AgentController and the TunnelStacks,

the received packets queue is get filled by using libpacp

library that uses a capture thread, AgentController is

responsible for re-dispatch the received packet to the

corresponding TunnelStack based on the de-capsulated

virtual IP address, on the other hand the sending queue is get

filled by the TunnelStack objects, libpacp capture thread will

captures the sending packets and will place these packets into

Journal of Advances in Computer Networks, Vol. 2, No. 4, December 2014

276

the network interface card. While they have proposed a

complete concurrent architecture that utilizes multiple IPSec

stacks inside each AgentNode but this comes with high

complexities which impacts the performance and result in

losing the efficiency, they have implemented several

inappropriate design choices which have leaded to sacrificing

the efficiency and the compatibility with standard IPSec

implementations. Having the architecture components at the

user space area as they did with the AgentController and the

TunnelStacks result in high context switch rates between user

space and kernel space which lead to performance deficiency

and extensive the processing power. Also, their design lead to

duplicating the TCP/IP stack and it happened by

implementing the TunnelStack objects and each of which is a

full TCP/IP stack this comes with implementation complexity

and code duplication. Also they use libpcap library to capture

sent and received packets by TunnelStack objects, libpcap has

a negativity to be implemented in this scenario, since libpcap

is just duplicating the packet, so the duplicated packet will be

dispatched to the corresponding TunnelStack by the

AgentController but still the main packet which has been

received on the physical interface will be processed and will

completes its decapsulation process up to reaching a certain

layer that the TCP/IP stack knows it cannot handle this packet

and the packet will be thrown after being processed. In

conclusion, their contribution result in code duplication, high

context switches between user and kernel space and it

sacrifices the compatibility with the standard IPSec

implementations.

As [7] have proposed another architecture that utilizes an

approach that uses caching data segments, they have

introduced IPSec Thumbnail Protocol (ITP) which capable of

encapsulating and compressing IP packets with defining its

own packets format. Their work based on the fact that many

data is being sent repeatedly, their target is to eliminate

sending redundant data. They slicing the data payload at

application layer, each data segments (slices) comes in

specified length, the sender should calculate the digest (hash

value) for each segment, a list of data segments and their

digests will compose a thumbnail, the sender will cache the

data segments and their associated digests at the Data

Segment Cache Base (DSCB), the receiver on its behalf will

decapsulate the thumbnail packet and will extract the data

segments and it will cache them at its DSCB, the next time

that one machine wants to send a data segments, for each

segment it will calculate the digest for the corresponding

segment and then it will check the DSCB if the digest is

present then the segment will not be placed in the thumbnail

packet, instead of that only the digest will be placed assuming

that the receiver has the same segment at his DSCB, if the

receiver does not have that segment of data, an ITP data

request will be sent to the sender which will be required to

respond with an ITP data delivery. Their work efficiency is

highly related to the data segments length, if the data segments

length is too large then it is likelihood that cache hit will rarely

present, and if the length is too small then it is likelihood it

will has more cache hits but it will has more digests

calculations for each packet, caching buffer (DSCP) will be

filled faster and also for the additional header which has been

added because of the thumbnail packet may has the same

length of the data segment and this may end up with no

improvement at all, this to state that specifying the data

segment length is critical in their work, they have decided to

use 256 bytes as data segment but it is not efficient to have a

fixed data segment size, since each type of application will

requires a different data segment size to have a high cache hits,

as example in case of sending a file over File Transfer

Protocol (FTP) with 256 bytes as data segment length it is

likelihood that no two blocks of that file or any other file will

have the identical digest, but in case of Secure Shell (SSH),

Telnet or Hypertext Transfer Protocol (HTTP) this may work.

Since they are using special packets format (thumbnail), their

approach is sacrificing the compatibility with standard IPSec

implementations. In case of a sender sent a thumbnail packets

which include some digests that the sender assumes the

receiver already have them while the receiver does not, for

each thumbnail packet the receiver will send a data request

packet with the corresponding missed data segments,

additionally the receiver needs to store them till the data

delivery packet which has the missed data segment comes

from the sender, if many packets that have missed data

segments arrived, then the receiver buffer can be

overwhelmed by the buffered thumbnail packets that await

their data segments to come from the sender.

VIII. IPSEC MULTI-TUNNELS ARCHITECTURE

Our novel approach is proposing a real concurrent IPSec

architecture, as there are many other related works that

delivered type of improvement through proposing new IPSec

architecture [8], our IPSec architecture uniquely utilizes

multi-tunnels between IPSec devices; this without negotiation

should result in performance improvement. As opposed to [6]

and [7] our approach does not sacrifice the compatibility

means it will works smoothly with standard IPSec

implementations. IPSec in normal situations establishing a

pair of tunnels between two parties, each pair of two tunnels

and each tunnel is associated with a SA, the ESP and AH

headers are responsible to carry out the SA id at each IPSec

packet, the SA id is known as Security Parameter Index (SPI),

SPI is enough to specify the SA but usually IPSec

implementations use SPI and IP source and destination

address to retrieve the corresponding SA from the SA

database in order to apply the security services on network

packets. Our approach is taking advantage of establishing two

or more pairs of SAs instead of one pair of SAs, if the two

parties have implemented our IPSec architecture then at least

there will be three pairs of SAs, since the in addition to the

main (standard) pair of SAs the initiator will establish its

duplicated pair of SAs, and the responder may do the same if

it has implemented our approach too, if only one party (either

initiator or responder) has implemented our approach then

there will be only two pairs of SAs. As opposed to [6] who

have implemented duplicated TCP/IP stacks at each machine,

our approach is using one TCP/IP stack.

As it is shown in Fig. 5, our architecture has fully

implemented at kernel level which does not increase the

context switches between user and kernel levels. Whenever a

host wants to establish a pair of SAs with remote party, the

Journal of Advances in Computer Networks, Vol. 2, No. 4, December 2014

277

IPSec tunnel establishing process should go through the

SAs-Controller which is responsible of delivering two IKE

negotiations [9] with the remote host, instead of the standard

IPSec procedure which establish only one pair of SAs.

Fig. 5. IPSec multi-tunnels architecture.

The implementation will always consider establishing two

pairs of SAs (two IKE negotiations) no matter if the local host

was an IKE initiator or responder, in the case of being a

responder it will re-act as an initiator to establish the

additional tunnel. The second major component is Packets

Dispatcher which is responsible of placing the IPSec packets

into the corresponding tunnels that reach the specified remote

host, the packets dispatcher will choose the best tunnel in a

way that guarantees that all the established tunnels will be

utilized effectively, each established tunnel has a queue that

holds IPSec packets, Packets Dispatcher is responsible of

specifying the SPI of the chosen tunnel which might be

retrieved by querying SAD database, it is essential to balance

the IPSec packets across the established tunnels evenly.

IX. CONCLUSION

We have covered the main aspects of IPSec protocol,

including its relationship with other protocols such as Internet

Key Exchange (IKE) and ISAKMP. We have identified IPSec

architecture which includes the main components such as

Security Associations Database (SAD) and Security Policy

Database (SPD). We have introduces its protocols AH and

ESP and their differences. We have seen how IPSec

implementation can be adopted into the TCP/IP stack in two

forms as native or shim. We have digged into StrongSwan one

of the best IPSec implementation at Linux systems. We have

introduced consistent criteria to evaluate IPSec

implementations. We have reviewed two proposed IPSec

architectures and we have listed their pros and cons, IPSec

architecture performance improvement should eliminate

implementing components at user space since this will lead to

high context switches rate between user and kernel space

since IPSec itself is implemented at kernel space, the

reviewed architectures sacrifice the compatibility with

standard IPSec implementations, using caching mechanisms

may improve IPSec performance but the data segment length

is critical these types of approaches and the data segment

length should be determined based on the type of the

application that is being sent. Finally we have introduced our

IPSec multi-tunnels approach that establishes more than one

pair of SAs tunnels, and we presented the architecture

components that responsible for establishing the additional

tunnel and the component that responsible for balance the

data across the established tunnels, our architecture is fully

implementable at kernel level which will eliminate increasing

the context switches, and as opposed to the other works it does

not sacrifice the compatibility with IPSec standard

implementations.

REFERENCES

[1] H. Dhall, D. Dhall, S. Batra, and P. Rani, "Implementation of IPSec

protocol," in Proc. Second International Conference on Advanced

Computing & Communication Technologies, 2012, pp. 176-181.

[2] Required kernel modules. (Oct. 2013). [Online]. Available:

http://wiki.strongswan.org/projects/strongswan/wiki/KernelModules

[3] StrongSwan developer documentation. (Oct. 2013). [Online].

Available:

http://wiki.strongswan.org/projects/strongswan/wiki/DeveloperDocu

mentation

[4] L. Liu and W. Gao, "Building IPsec VPN in IPv6 based on openswan,"

in Proc. IFIP International Conference on Network and Parallel

Computing Workshops, 2007, pp. 784-787.

[5] M. Barylski, "On IPSec performance testing of IPv4/IPv6 IPSec

gateway," in Proc. IT 2008 1st International Conference on

Information Technology, 2008, pp. 1-4.

[6] S. Wang and H. Lv, "A distributed object-based IPSec multi-tunnels

concurrent architecture," in Proc. 2011 International Conference on

Computational Problem-Solving (ICCP), 2011, pp. 471-476.

[7] Y. Zhang, Z. Li, S. Mei, L. Xiao, and M. Wang, "A new approach for

accelerating IPSec communication," in Proc. International

Conference on Multimedia Information Networking and Security,

2009, pp. 482-485.

[8] M. Fahandezh, M. Bondy, and S. Erfani, "A framework for

implementing IPSec functional architecture," in Proc. Canadian

Conference on Electrical and Computer Engineering, 2009, pp.

71-76.

[9] L. Yu, S. Jia, C. Xu, J. Guan, and D. Gao, "An IPsec seamless

switching mechanism with high availability and scalability by

extending IKEv2 protocol," in Proc. 2011 International Conference

on Advanced Intelligence and Awareness Internet, 2011, pp. 25-29.

Abdulellah A. Alsaheel was born in Saudi Arabia,

Riyadh on August 29, 1987. He received a bachelor

degree in computer science from Imam Mohammed

Bin Saud University in Saudi Arabia, in 2011.

Currently he is pursuing his master degree in computer

science at King Saud University in Saudi Arabia.

He is a software developer at Ministry of Defense in

Kingdom of Saudi Arabia. His research interests

include network security, software vulnerability and

malware analysis.

Mr. Alsaheel has been awarded at different competitions. He has achieved

the first prize in “the first scientific conference” in Al-Imam University, by

participating with his research about the honeypots and improving Snort. He

has achieved the first prize in the “best information security graduation

project” competition at King Saud University-COEIA competition. He has

participated “Google Summer of Code” –GSOC- and passed the program

successfully by improving "Cuckoo Sandbox" of honeynet.org.

Ahmad Al-Mogren obtained his PhD degree in computer sciences and

telecommunications from Southern Methodist University, Dallas, Texas,

USA in 2002. Previously, he worked as an assistant professor of computer

science and the head of the Scientific Council at Riyadh College of

Technology. He also served as the dean of Computer College and the head of

the Council of Academic Accreditation at Al Yamamah University.

Presently, he works as the vice dean for Quality and Development at King

Saud University in Saudi Arabia. He has taught several courses such as

computer networks, mobile computing, databases, digital communication,

clustering and fault tolerance. His research areas of interest include

networking and data consistency.

Journal of Advances in Computer Networks, Vol. 2, No. 4, December 2014

278

